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My research focuses on phylogenetics and applied probability/statistics, with an emphasis on the development of
next-generation Markov chain Monte Carlo (MCMC) methods for phylogenetic inference. I am also interested in
computational methods for experimental design and control of biological systems, as well as machine learning algorithms
and their applications in applied sciences.

Modern phylogenetic inference methods for modern data sets

Phylogenetics, the inference of evolutionary trees from molecular sequence data such as DNA, is an
important enterprise enabling an evolutionary understanding of biological systems. Modern data sets in
phylogenetics are typically large, heterogeneous and increasingly dynamic; however, current computational
methods have not been able to handle such increasing complexities. My research aim is to extend our
understanding about the essential objects involved in phylogenetics, to establish theoretical foundations
for statistical analyses on tree spaces, and to use such knowledge to design fundamentally new inference
methodologies.

Figure 1: Tree space modeled as
a (non-differentiable) cubical complex
with convex geodesics.

Theoretical foundations for statistics on tree spaces: geometry of
tree spaces and the phylogenetic likelihood surfaces. The set of
phylogenetic trees forms a space with discrete (graph structure) and
continuous (branch lengths) components. Most statistical methods are
not developed with such spaces in mind. A central theme of my
research is to extend statistical methods to more complex spaces, here
the cubical complex model of tree space (Figure 1).

Figure 2: The `2-regularized estimator
allows for using confidence regions on
tree spaces to assess the support of
topological properties even when data is
not well-informed.

Geometric properties of phylogenetic likelihood surfaces play an
essential role in analyses and designs of phylogenetic algorithms.
Theoretical and simulation results indicate that the phylogenetic
likelihood surface might be quite complex. This is further supported
by one of our recent work [1], in which we prove that one-dimensional
phylogenetic likelihood functions may take the shape of any given arbitrary
continuous function. This analysis also helps develop specialized
surrogate functions for branch length inference, which has been
partially implemented in our open-source library for phylogenetic
curve-fitting1.

1 https://github.com/matsengrp/lcfit

Phylogenetic regularization. Regularization has not yet had the impact
on phylogenetics that it has in the rest of statistics. We develop the
first regularized estimator for tree reconstruction, which uses the squared
geodesic distance on tree space as the penalty to derive an `2-type penalty.
This estimator incorporates information about the species tree to
enhance the accuracy and stability of individual gene trees estimation
[2]. We prove that this method is consistent, and derived its global
convergence rate for estimating the discrete gene tree structure and
continuous edge lengths simultaneously. Through analyses of the

https: //github.com/matsengrp/lcfit
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phylogenetic likelihood surfaces and by the convexity of the geodesic
distance, we prove that the estimator is adaptively fast convergent2. 2 meaning that it can reconstruct all

edges of length greater than any
given threshold from gene sequences of
polynomial length.

Figure 3: The phylogenetic likelihood
function is non-differentiable across
topologies and the tree space is not a
manifold. phyloHMC traverses the tree
space using a stochastic extension of the
standard leap-frog integrator.

Exploring the cubical complex of phylogenetic trees with Hamiltonian
dynamics. Hamiltonian Monte Carlo (HMC) is a powerful sampling
algorithm which has been shown to outperform many existing MCMC
algorithms in various contexts. However, the construction of an HMC
sampling method for phylogenetic inference has been hindered by the
discrete nature of the inference problem. To resolve this issue, we
develop phyloHMC, a probabilistic version of HMC on the cubical complex of
phylogenetic trees, and establish that the new integrator retains the good
theoretical properties of Hamiltonian dynamics in classical settings3.

3 namely, time-reversibility, volume
preservation and accessibility

We then prove that the resulting Markov chain is ergodic, and that the
algorithm is capable of exploring the tree spaces more efficiently than
traditional MCMC methods [3].

Online phylogenetic inference with Sequential Monte Carlo.
Phylogenetics is being used in new dynamic ways, with sequence
data continually being generated. This information needs to be be
quickly analyzed by automated algorithms and presented for analysis.
While appropriate computational infrastructure now exists, there are
no phylogenetic algorithms for such a stream of data.

In a recent work, we develop the first online algorithm for
phylogenetics: an online sequential Monte Carlo (OPSMC) method
that continually updates phylogenetic posteriors given additional data
[4]. We derive the first set of bounds describing how phylogenetic likelihood
surfaces change when new sequences are added. These bounds enable us to
characterize the theoretical performance of our sampler by bounding
the effective sample size with a given number of particles and prove
that for well-designed phylogenetic proposals, the diversity of OPSMC
does not degenerate even as the problem dimension increases.

Figure 4: Unlike standard setting where
all data are sampled at leaves, `1-type
regularized estimator allows sampled
data to belong to an ancestor nodes.

Future directions:
1. The relation between the geometry of the likelihood surfaces and

mixing times of MCMC methods for phylogenetic inference.
2. The local-to-global property in phylogenetics4.

4 namely, how information from a single
tree topology can be used to represent
the likelihood from on the whole tree
space

3. `1-type regularized estimator to infer sampled ancestors.

Probabilistic methods for experimental design and control of
dynamical systems

Studies of biological systems are usually hindered by several factors: biological systems are usually
unidentifiable, and data collected to study such systems are often very sparse and noisy due to technical
limitations and experimental constraints. Moreover, the presence of multivariate bifurcations often leads
to system behaviors that are very different in nature. As a result, analyses of high-dimensional biological
systems usually need to be performed locally.
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In my work, we resolve those issues by building a probabilistic
framework for experimental design and control of biological systems
and utilizing this framework to obtain effective sampling schemes
for global systems analysis. We develop a sequential scheme for
experimental design and prove its consistency [5]. In a similar
manner, we analyze different effective sampling schemes for behavior
discrimination and provide theoretical support for such approaches
[6]. We also employ this framework and the behavior discrimination
algorithm to derive explicit model predictive controllers of the T-cell
signaling pathway by model-informed open-loop control [7] and
integral sliding mode control (Figure 5) [8, 9].

Figure 5: A model explicit controller
constructed using a behavior
discrimination algorithm with
low-descrepancy sampled data.Future directions:

1. Data-free global identifiability of biological systems.
2. Uncertainty quantification methods for models with discontinuous responses.

Machine learning: theory and applications

The rate with which a learning algorithm converges as more data come in plays a central role in machine
learning. I am interested in settings under which fast learning rates5 are possible.

5 “Fast learning” means the trained
classifier converges with rate faster than
n−1/2.

Figure 6: Sampled data for classification
from a pseudo-Bayesian active sampling
scheme.

Learning with non-regular data. In various applications, the
standard assumption for statistical learning, which dictates that
data are distributed independent and identically corresponding to a
well-behaved distribution, may not hold. This makes the tasks of
designing and analyzing learning algorithms more challenging. We
attempt to relax such conditions in various settings. First, we derive
the convergence rate of the weighted average algorithm when the training
data is a V-geometrically ergodic Markov chain [10]. We then prove
new fast learning rates for one-vs-all multi-class plug-in classifiers trained
from mixing data [11]. In [12], we obtain fast learning rate for the
empirical risk minimization estimator when the distribution of the losses
over the hypothesis spaces has heavy tails.

Applications. In addition to theory, I am also interested in applications
of machine learning algorithms in applied sciences. In [13], we
develop a spectral-based representation method with more than 90%
accuracy in identifying individuals from their eye movements. We also
employ active learning6 schemes to increase performances of learning

6 Active learning means the learning
algorithm is able to interactively query
labelers to maximize the information
received and increase algorithmic
performance.

algorithms in various applications, including systems biology [5, 6],
control theory [8, 9] and applied spectroscopy [14].

Future directions:
1. Pseudo-Bayesian learning with heavy-tailed losses.
2. Bayesian pool-based active learning with weak labelers7.

7 In contrast to standard settings, weak
labelers have the option to abstain from
providing the labels of an instance.3. Designing optimal sampling schemes for phylogenetic models.
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