MATH 450: Mathematical statistics

Vu Dinh

Departments of Mathematical Sciences University of Delaware

August 28th, 2018

Vu Dinh MATH 450: Mathematical statistics

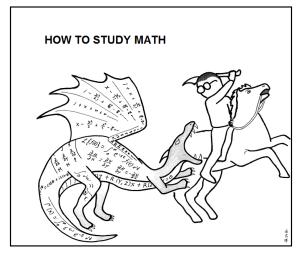
• Classes:

Tuesday & Thursday 9:30-10:45 am, Gore Hall 115

- Office hours: Tuesday-Wednesday 1-2:30 pm, Ewing Hall 312
- Website: http://vucdinh.github.io/m450f18
- Textbook: *Modern mathematical statistics with applications* (Second Edition). Devore and Berk. Springer, 2012.

Evaluation

- Overall scores will be computed as follows: 25% homework, 10% quizzes, 25% midterm, 40% final
- No letter grades will be given for homework, midterm, or final. Your letter grade for the course will be based on your overall score.
- The lowest homework scores and the lowest quiz score will be dropped.
- Here are the letter grades you can achieve according to your overall score.
 - $\bullet~\geq$ 90%: At least A
 - \geq 75%: At least B
 - \geq 60%: At least C
 - \geq 50%: At least D



Don't just read it; fight it!

--- Paul R. Halmos

・ロト ・回ト ・ヨト ・ヨト

æ

- Assignments will be posted on the website every other Tuesday (starting from the second week) and will be due on Thursday of *the following week, at the beginning of* lecture.
- No late homework will be accepted.
- The lowest homework scores will be dropped in the calculation of your overall homework grade.

- At the end of some chapter, there will be a short quiz during class.
- The quiz dates will be announced at least one class in advance.
- The lowest quiz score will be dropped.

There will be a midterm on 10/25 and a final exam during exams week.

Open source statistical system R

http://cran.r-project.org/

Tentative schedule

Week	Chapter	Note
1	1	
2	6.1 - 6.2	
3	6.2 - 6.3	HW1 (due 09/13)
4	7.1	
5	7.2	HW2 (due 09/27)
6	7.3 - 7.4	
7	8.1 - 8.2	HW3 (due 10/11)
8	8.3 - 8.5	
9	Review + Exam	Midterm exam $(10/25)$
10	9.1 - 9.2	HW4 (due 11/01)
11	9.2 - 9.3	
12	10.1	HW5 (due 11/15)
13		Thanksgiving week (no class)
14	11 - 12	HW6 (due 11/29)
15	12 + Review	
16		Final week

Textbook: *Modern mathematical statistics with applications* (Second Edition). Devore and Berk. Springer, 2012.

Week 1	Chapter 6: Statistics and Sampling Distributions
Week 4 · · · · ·	Chapter 7: Point Estimation
Week 7 · · · · •	Chapter 8: Confidence Intervals
Week 10 · · · · •	Chapter 9: Test of Hypothesis
	Chapter 10: Two-sample inference
Week 14 · · · · ·	Regression

Mathematical statistics

Vu Dinh MATH 450: Mathematical statistics

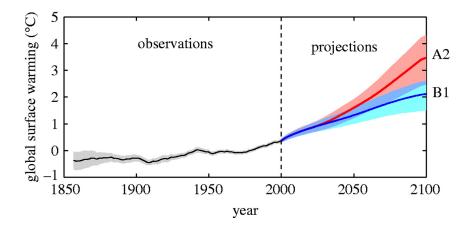
æ

聞 と く き と く き と

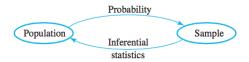
- Statistics is a branch of mathematics that deals with the collection, organization, analysis, interpretation and presentation of data
- "...analysis, interpretation and presentation of data" \rightarrow mathematical statistics
 - descriptive statistics: the part of statistics that describes data
 - inferential statistics: the part of statistics that draws conclusions from data

Modelling uncertainties

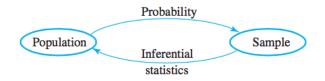
— Modern statistics is about making prediction in the presence of uncertainties



- It is difficult to make predictions, especially about the future.



- population: a well-defined collection of objects of interest
- when desired information is available for all objects in the population, we have what is called a *census* → very expensive
- a sample, a subset of the population, is selected



Definition

The random variables $X_1, X_2, ..., X_n$ are said to form a (simple) random sample of size n if

- the X_i 's are independent random variables
- **2** every X_i has the same probability distribution

Review: Probability

Vu Dinh MATH 450: Mathematical statistics

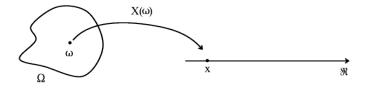
P

æ

- Axioms of probability
- Conditional probability and independence
- Random variables
- Special distributions
- Bivariate and multivariate distributions

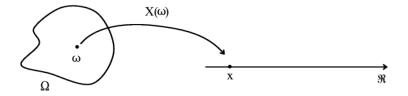
- Expectation and variance of random variables (discrete and continuous)
- Computations with normal distributions
- Bivariate and multivariate distributions

Random variables



- random variables are used to model uncertainties
- Notations:
 - random variables are denoted by uppercase letters (e.g., X);
 - the calculated/observed values of the random variables are denoted by lowercase letters (e.g., x)

Random variable



Definition

Let S be the sample space of an experiment. A real-valued function $X : S \to \mathbb{R}$ is called a random variable of the experiment.

Definition

A random variables X is discrete if the set of all possible values of X

- is finite
- is countably infinite

Note: A set A is countably infinite if its elements can be put in one-to-one correspondence with the set of natural numbers, i.e, we can index the element of A as a sequence

$$A = \{x_1, x_2, \ldots, x_n, \ldots\}$$

A random variable X is described by its *probability mass function*

Definition The probability mass function p of a random variable X whose set of possible values is $\{x_1, x_2, x_3, ...\}$ is a function from \mathbf{R} to \mathbf{R} that satisfies the following properties.

(a)
$$p(x) = 0$$
 if $x \notin \{x_1, x_2, x_3, ...\}$.

(b)
$$p(x_i) = P(X = x_i)$$
 and hence $p(x_i) \ge 0$ $(i = 1, 2, 3, ...)$.

(c)
$$\sum_{i=1}^{\infty} p(x_i) = 1.$$

Represent the probability mass function

• As a table

x	1	2	3	4	5	6	7
p(x)	.01	.03	.13	.25	.39	.17	.02

• As a function:

$$p(x) = \begin{cases} \frac{1}{2} \left(\frac{2}{3}\right)^x & \text{if } x = 1, 2, 3, \dots, \\ 0 & \text{elsewhere} \end{cases}$$

Definition The expected value of a discrete random variable X with the set of possible values A and probability mass function p(x) is defined by

$$E(X) = \sum_{x \in A} x p(x).$$

We say that E(X) exists if this sum converges absolutely.

The expected value of a random variable X is also called the **mean**, or the **mathematical expectation**, or simply the **expectation** of X. It is also occasionally denoted by E[X], E(X), EX, μ_X , or μ .

Problem

A random variable X has the following pmf table

What is the expected value of X?

Theorem 4.2 Let X be a discrete random variable with set of possible values A and probability mass function p(x), and let g be a real-valued function. Then g(X) is a random variable with

$$E[g(X)] = \sum_{x \in A} g(x)p(x).$$

Problem

A random variable X has the following pmf table

X	0	1	2
probability	0.25	0.5	0.25

• What is
$$E[X^2 - X]$$
?

• Compute Var[X]

$$Var[X] = E[(X - E[X])^2] = E[X^2] - (E[X])^2$$

-

Definition

Let X be a random variable. Suppose that there exists a nonnegative real-valued function $f : \mathbb{R} \to [0, \infty)$ such that for any subset of real numbers A, we have

$$P(X \in A) = \int_A f(x) dx$$

Then X is called **absolutely continuous** or, for simplicity, **continuous**. The function f is called the **probability density function**, or simply the **density function** of X.

Whenever we say that X is continuous, we mean that it is absolutely continuous and hence satisfies the equation above.

Let X be a continuous r.v. with density function f, then

•
$$\int_{-\infty}^{\infty} f(x) \, dx = 1$$

• For any fixed constant a, b,

$$P(a \le X \le b) = \int_{a}^{b} f(x) dx$$
$$P(X = a) = 0$$
$$P(a < X < b) = P(a \le X < b) = P(a < X \le b) = P(a \le X \le b)$$

Probability density function

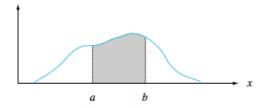


Figure 4.2 $P(a \le X \le b)$ = the area under the density curve between *a* and *b*

Definition If X is a continuous random variable with probability density function f, the **expected value** of X is defined by

$$E(X) = \int_{-\infty}^{\infty} x f(x) \, dx.$$

The expected value of X is also called the **mean**, or **mathematical expectation**, or simply the **expectation** of X, and as in the discrete case, sometimes it is denoted by EX, E[X], μ , or μ_X .

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem 6.3 Let X be a continuous random variable with probability density function f(x); then for any function $h : \mathbf{R} \to \mathbf{R}$,

$$E[h(X)] = \int_{-\infty}^{\infty} h(x) f(x) \, dx.$$

・ 同 ト ・ ヨ ト ・ ヨ ト

3

Problem

Let X be a continuous r.v. with density function

$$f(x) = egin{cases} ce^{-2x} & \textit{if } x \geq 0 \ 0 & \textit{otherwise} \end{cases}$$

where c is some unknown constant.

- Compute c
- Compite $P(X \in [1, 2])$
- Compute E[X] and Var(X).