Mathematical statistics

Tuesday, September 4th, 2018

Lecture 3: Statistics and sampling distribution

Mathematical statistics

Week 1 · · · · ·	Probability reviews
Week 2 · · · · ·	Chapter 6: Statistics and Sampling Distributions
Week 4 · · · · ·	Chapter 7: Point Estimation
Week 7 · · · · ·	Chapter 8: Confidence Intervals
Week 10 · · · · ·	Chapter 9: Test of Hypothesis
Week 14	Regression

æ

- 6.1 Statistics and their distributions
- 6.2 The distribution of the sample mean
- 6.3 The distribution of a linear combination

Order $6.1 \rightarrow 6.3 \rightarrow 6.2$

Definition

The random variables $X_1, X_2, ..., X_n$ are said to form a (simple) random sample of size n if

- the X_i 's are independent random variables
- **2** every X_i has the same probability distribution

/₽ ► < ∃ ►

Definition

Two random variables X and Y are said to be independent if for every pair of x and y values,

 $P(X = x, Y = y) = P_X(x) \cdot P_Y(y)$ if the variables are discrete

or

$$f(x, y) = f_X(x) \cdot f_Y(y)$$
 if the variables are continuous

Property

If X and Y are independent, then for any functions g and h

$$E[g(X) \cdot h(Y)] = E[g(X)] \cdot E[h(Y)]$$

Definition

A statistic is any quantity whose value can be calculated from sample data

- prior to obtaining data, there is uncertainty as to what value of any particular statistic will result \to a statistic is a random variable
- the probability distribution of a statistic is referred to as its *sampling distribution*

Random variables

- random variables are used to model uncertainties
- Notations:
 - random variables are denoted by uppercase letters (e.g., X);
 - the calculated/observed values of the random variables are denoted by lowercase letters (e.g., x)

Example of a statistic

- Let X_1, X_2, \ldots, X_n be a random sample of size n
- The sample mean of X_1, X_2, \ldots, X_n , defined by

$$\bar{X}=\frac{X_1+X_2+\ldots X_n}{n},$$

is a statistic

• When the values of x_1, x_2, \ldots, x_n are collected,

$$\bar{x}=\frac{x_1+x_2+\ldots x_n}{n},$$

is a realization of the statistic $ar{X}$

- Let X_1, X_2, \ldots, X_n be a random sample of size n
- The random variable

$$T = X_1 + 2X_2 + 3X_5$$

is a statistic

• When the values of x_1, x_2, \ldots, x_n are collected,

$$t = x_1 + 2x_2 + 3x_5,$$

is a realization of the statistic T

Given statistic T computed from sample X_1, X_2, \ldots, X_n

- Question 1: If we **know** the distribution of X_i's, can we obtain the distribution of T?
- Question 2: If we **don't know** the distribution of X_i's, can we still obtain/approximate the distribution of T?

Real questions: If T is a linear combination of X_i 's, can we

- compute the distribution of T in some easy cases?
- compute the expected value and variance of T?

Real questions: If $T = X_1 + X_2$

- compute the distribution of T in some easy cases
- compute the expected value and variance of T

Consider the distribution P

Let $\{X_1, X_2\}$ be a random sample of size 2 from P, and $T = X_1 + X_2$.

• Compute
$$P[T = 40]$$

/⊒ ► < È ►

э

Consider the distribution P

Let $\{X_1, X_2\}$ be a random sample of size 2 from P, and $T = X_1 + X_2$.

- Compute P[T = 40]
- **2** Derive the probability mass function of T

Consider the distribution P

Let $\{X_1, X_2\}$ be a random sample of size 2 from P, and $T = X_1 + X_2$.

- **(**) *Compute* P[T = 100]
- Our Derive the probability mass function of T
- **③** Compute the expected value and the standard deviation of T

Let $\{X_1, X_2\}$ be a random sample of size 2 from the exponential distribution with parameter λ

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$

and $T = X_1 + X_2$. What is the distribution of T?

/₽ ► < ∃ ►

For continuous random variable:

$$F_X(t) = P(X \le t) = \int_{-\infty}^t f(x) \, dx$$

Figure 4.5 A pdf and associated cdf

Moreover:

$$f(x)=F'(x)$$

Mathematical statistics

æ

Let $\{X_1, X_2\}$ be a random sample of size 2 from the exponential distribution with parameter λ

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$

and $T = X_1 + X_2$.

Example 2

$$F_{T_{o}}(t) = P(X_{1} + X_{2} \le t) = \iint_{\{(x_{1}, x_{2}):x_{1} + x_{2} \le t\}} f(x_{1}, x_{2}) dx_{1} dx_{2}$$

$$= \int_{0}^{t} \int_{0}^{t-x_{1}} \lambda e^{-\lambda x_{1}} \cdot \lambda e^{-\lambda x_{2}} dx_{2} dx_{1} = \int_{0}^{t} (\lambda e^{-\lambda x_{1}} - \lambda e^{-\lambda t}) dx_{1}$$

$$= 1 - e^{-\lambda t} - \lambda t e^{-\lambda t}$$

Mathematical statistics

▲□ ▶ ▲ □ ▶ ▲ □ ▶

æ

Let $\{X_1, X_2\}$ be a random sample of size 2 from the exponential distribution with parameter $\lambda = 2$

$$f(x) = \begin{cases} 2e^{-2x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$

and $T = X_1 + X_2$.

- Compute the cumulative density function (cdf) of T
- **②** Compute the probability density function (pdf) of T

- If the distribution and the statistic T is simple, try to construct the pmf of the statistic (as in Example 1)
- **2** If the probability density function $f_X(x)$ of X's is known, the
 - try to represent/compute the cumulative distribution (cdf) of ${\cal T}$

$$\mathbb{P}[T \leq t]$$

• take the derivative of the function (with respect to t)

Consider the distribution P

Let $\{X_1, X_2\}$ be a random sample of size 2 from P, and $T = X_1 - X_2$.

Derive the probability mass function of T

Occupate the expected value and the standard deviation of T

Let $\{X_1, X_2\}$ be a random sample of size 2 from the exponential distribution with parameter λ

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$

and $T = X_1 + 2X_2$.

- Compute the cumulative density function (cdf) of T
- **②** Compute the probability density function (pdf) of T