Mathematical statistics

September 6th, 2018

Lecture 4: The distribution of a linear combination

Mathematical statistics

Week 1 · · · · ·	Probability reviews					
Week 2 · · · · ·	Chapter 6: Statistics and Sampling Distributions					
Week 4 · · · · ·	Chapter 7: Point Estimation					
Week 7 · · · · ·	Chapter 8: Confidence Intervals					
Week 10 · · · · ·	Chapter 9: Test of Hypothesis					
Week 14	Regression					

- 6.1 Statistics and their distributions
- 6.2 The distribution of the sample mean
- 6.3 The distribution of a linear combination

Order $6.1 \rightarrow 6.3 \rightarrow 6.2$

Definition

The random variables $X_1, X_2, ..., X_n$ are said to form a (simple) random sample of size n if

- the X_i 's are independent random variables
- **2** every X_i has the same probability distribution

/₽ ► < ∃ ►

Definition

A statistic is any quantity whose value can be calculated from sample data

- prior to obtaining data, there is uncertainty as to what value of any particular statistic will result \to a statistic is a random variable
- the probability distribution of a statistic is referred to as its *sampling distribution*

Example of a statistic

- Let X_1, X_2, \ldots, X_n be a random sample of size n
- The sample mean of X_1, X_2, \ldots, X_n , defined by

$$\bar{X}=\frac{X_1+X_2+\ldots X_n}{n},$$

is a statistic

• When the values of x_1, x_2, \ldots, x_n are collected,

$$\bar{x}=\frac{x_1+x_2+\ldots x_n}{n},$$

is a realization of the statistic $ar{X}$

- Let X_1, X_2, \ldots, X_n be a random sample of size n
- The random variable

$$T = X_1 + 2X_2^2 + 3X_5^3$$

is a statistic

• When the values of x_1, x_2, \ldots, x_n are collected,

$$t = x_1 + 2x_2^2 + 3x_5^3,$$

is a realization of the statistic T

Given a random sample X_1, X_2, \ldots, X_n , and

$$T = a_1 X_1 + a_2 X_2 + \ldots + a_n X_n$$

- If we know the distribution of X_i's, can we obtain the distribution of T?
 - Last lecture: Simple cases
 - 2^{nd} lecture: If $X_i's$ follow normal distribution, then so does T.
- If we don't know the distribution of X_i's, can we still obtain/approximate the distribution of T?
 - Can we at least compute the mean and the variance?
 - When T is the sample mean, i.e. $a_1 = a_2 = \ldots = \frac{1}{n}$

If $T = X_1 + X_2$

- compute the distribution of T in some easy cases
- \bullet compute the expected value and variance of ${\cal T}$

Consider the distribution P

Let $\{X_1, X_2\}$ be a random sample of size 2 from P, and $T = X_1 + X_2$.

- **(**) *Compute* P[T = 100]
- Our Derive the probability mass function of T
- **③** Compute the expected value and the standard deviation of T

Let $\{X_1, X_2\}$ be a random sample of size 2 from the exponential distribution with parameter λ

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$

and $T = X_1 + X_2$. What is the distribution of T?

白 ト く ヨ

- If the distribution and the statistic T is simple, try to construct the pmf of the statistic (as in Example 1)
- **2** If the probability density function $f_X(x)$ of X's is known, the
 - try to represent/compute the cumulative distribution (cdf) of ${\cal T}$

$$\mathbb{P}[T \leq t]$$

• take the derivative of the function (with respect to t)

Linear combination of normal random variables

Mathematical statistics

э

 $\mathcal{N}(\mu, \sigma^2)$

 $E(X) = \mu$, $Var(X) = \sigma^2$

▲御▶ ▲理▶ ▲理▶

 $\Phi(z)$

$$\Phi(z) = P(Z \le z) = \int_{-\infty}^{2} f(y) \, dy$$

- ● ● ●

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9278	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767

Table A.3 Standard Normal Curve Areas (cont.)

 $\Phi(z) = P(Z \le z)$

Let X be a normal random variable with mean μ and standard deviation σ .

Then

$$Z = \frac{X - \mu}{\sigma}$$

follows the standard normal distribution.

Shifting and scaling normal random variables

If X has a normal distribution with mean μ and standard deviation σ , then

$$Z = \frac{X - \mu}{\sigma}$$

has a standard normal distribution. Thus

$$P(a \le X \le b) = P\left(\frac{a-\mu}{\sigma} \le Z \le \frac{b-\mu}{\sigma}\right)$$
$$= \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$$
$$P(X \le a) = \Phi\left(\frac{a-\mu}{\sigma}\right) \quad P(X \ge b) = 1 - \Phi\left(\frac{b-\mu}{\sigma}\right)$$

@▶ ◀ ▣▶ ◀

Theorem

Let $X_1, X_2, ..., X_n$ be independent normal random variables (with possibly different means and/or variances). Then

$$T=a_1X_1+a_2X_2+\ldots+a_nX_n$$

also follows the normal distribution.

What are the mean and the standard deviation of T?

•
$$E(T) = a_1 E(X_1) + a_2 E(X_2) + \ldots + a_n E(X_n)$$

• $\sigma_T^2 = a_1^2 \sigma_{X_1}^2 + a_2^2 \sigma_{X_2}^2 + \ldots + a_n^2 \sigma_{X_n}^2$

Assume that

$$X_1 \sim \mathcal{N}(50, 13)$$
 and $X_2 \sim \mathcal{N}(30, 12)$

are independent.

- What is the distribution of $T = X_1 X_2$?
- What is $P[T \le 29.8]$

→ ∢ ≣

A concert has three pieces of music to be played before intermission. The time taken to play each piece has a normal distribution.

Assume that the three times are independent of each other. The mean times are 15, 30, and 20 min, respectively, and the standard deviations are 1, 2, and 1.5 min, respectively.

What is the distribution of the length of the concert?

Let X_1, X_2, \ldots, X_{16} be a random sample from $\mathcal{N}(1, 4)$ (that is, normal distribution with mean $\mu = 1$ and standard deviation $\sigma = 2$). Let \overline{X} be the sample mean

$$ar{X} = rac{X_1 + X_2 + \ldots + X_{16}}{16}$$

- What is the distribution of \bar{X} ?
- Compute $P[\bar{X} \le 1.82]$

Let $X_1, X_2, ..., X_n$ be a random sample from $\mathcal{N}(\mu, \sigma^2)$ (that is, normal distribution with mean μ and standard deviation σ). Let \overline{X} be the sample mean

$$\bar{X} = \frac{X_1 + X_2 + \ldots + X_n}{n}$$

What is the distribution of \bar{X} ?

Two airplanes are flying in the same direction in adjacent parallel corridors. At time t = 0, the first airplane is 10 km ahead of the second one.

Suppose the speed of the first plane (km/h) is normally distributed with mean 520 and standard deviation 10 and the second planes speed, independent of the first, is also normally distributed with mean and standard deviation 500 and 10, respectively.

What is the probability that after 2h of flying, the second plane has not caught up to the first plane?

What if X_i 's are not normal distributions?

Mathematical statistics

э

A∄ ▶ ∢ ∃=

Theorem

Let $X_1, X_2, ..., X_n$ be independent random variables (with possibly different means and/or variances). Define

$$T = a_1 X_1 + a_2 X_2 + \ldots + a_n X_n,$$

then the mean and the standard deviation of T can be computed by

•
$$E(T) = a_1 E(X_1) + a_2 E(X_2) + \ldots + a_n E(X_n)$$

•
$$\sigma_T^2 = a_1^2 \sigma_{X_1}^2 + a_2^2 \sigma_{X_2}^2 + \ldots + a_n^2 \sigma_{X_n}^2$$

Given a random sample $X_1, X_2, ..., X_n$ from a distribution with mean μ and standard deviation σ , the mean is modeled by a random variable \bar{X} ,

$$\bar{X} = \frac{X_1 + X_2 + \ldots + X_n}{n}$$

- Compute $E(\bar{X})$
- Compute Var(X̄)

Let $X_1, X_2, ..., X_n$ be a random sample from a distribution with mean value μ and standard deviation σ . Then

1. $E(\overline{X}) = \mu_{\overline{X}} = \mu$ **2.** $V(\overline{X}) = \sigma_{\overline{X}}^2 = \sigma^2/n$ and $\sigma_{\overline{X}} = \sigma/\sqrt{n}$

Theorem

Let X_1, X_2, \ldots, X_n be a random sample from a distribution with mean μ and variance σ^2 . Then, in the limit when $n \to \infty$, the standardized version of \overline{X} have the standard normal distribution

$$\lim_{n\to\infty} \mathbb{P}\left(\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \leq z\right) = \mathbb{P}[Z \leq z] = \Phi(z)$$

Rule of Thumb:

If n > 30, the Central Limit Theorem can be used for computation.

Example: population distribution

Matt Nedrick (2015). http://github.com/mattnedrich/CentralLimitTheoremDemo

Sample distribution: n = 3

Sample distribution: n = 10

Sample distribution: n = 30

When a batch of a certain chemical product is prepared, the amount of a particular impurity in the batch is a random variable with mean value 4.0 g and standard deviation 1.5 g.

If 50 batches are independently prepared, what is the (approximate) probability that the sample average amount of impurity X is between 3.5 and 3.8 g?

Hint:

- First, compute $\mu_{\bar{X}}$ and $\sigma_{\bar{X}}$
- Note that

$$\underline{\bar{X} - \mu_{\bar{X}}}$$

 $\sigma_{\bar{X}}$

is (approximately) standard normal.