Mathematical statistics

September $13^{\text {st }}, 2018$
Lecture 6: Statistics and sampling distributions

Week 1	Probability reviews
	Chapter 6: Statistics and Sampling Distributions
Week 4	Chapter 7: Point Estimation
Week 7	Chapter 8: Confidence Intervals
Week 10	Chapter 9: Test of Hypothesis
Week 14	Regression

Chapter 6: Summary

Chapter 6

6.1 Statistics and their distributions
6.2 The distribution of the sample mean
6.3 The distribution of a linear combination

Random sample

Definition

The random variables $X_{1}, X_{2}, \ldots, X_{n}$ are said to form a (simple) random sample of size n if
(1) the X_{i} 's are independent random variables
(2) every X_{i} has the same probability distribution

Section 6.1: Sampling distributions

(1) If the distribution and the statistic T is simple, try to construct the pmf of the statistic
(2) If the probability density function $f_{X}(x)$ of X 's is known, the

- try to represent/compute the cumulative distribution (cdf) of T

$$
\mathbb{P}[T \leq t]
$$

- take the derivative of the function (with respect to t)

Section 6.3: Linear combination of normal random variables

Theorem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent normal random variables (with possibly different means and/or variances). Then

$$
T=a_{1} X_{1}+a_{2} X_{2}+\ldots+a_{n} X_{n}
$$

also follows the normal distribution.

Section 6.3: Computations with normal random variables

If X has a normal distribution with mean μ and standard deviation σ, then

$$
Z=\frac{X-\mu}{\sigma}
$$

has a standard normal distribution. Thus

$$
\begin{gathered}
P(a \leq X \leq b)=P\left(\frac{a-\mu}{\sigma} \leq Z \leq \frac{b-\mu}{\sigma}\right) \\
=\Phi\left(\frac{b-\mu}{\sigma}\right)-\Phi\left(\frac{a-\mu}{\sigma}\right) \\
P(X \leq a)=\Phi\left(\frac{a-\mu}{\sigma}\right) \quad P(X \geq b)=1-\Phi\left(\frac{b-\mu}{\sigma}\right)
\end{gathered}
$$

Theorem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables (with possibly different means and/or variances). Define

$$
T=a_{1} X_{1}+a_{2} X_{2}+\ldots+a_{n} X_{n}
$$

then the mean and the standard deviation of T can be computed by

- $E(T)=a_{1} E\left(X_{1}\right)+a_{2} E\left(X_{2}\right)+\ldots+a_{n} E\left(X_{n}\right)$
- $\sigma_{T}^{2}=a_{1}^{2} \sigma_{X_{1}}^{2}+a_{2}^{2} \sigma_{X_{2}}^{2}+\ldots+a_{n}^{2} \sigma_{X_{n}}^{2}$

Theorem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution with mean μ and variance σ^{2}. Then, in the limit when $n \rightarrow \infty$, the standardized version of \bar{X} have the standard normal distribution

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \leq z\right)=\mathbb{P}[Z \leq z]=\Phi(z)
$$

Rule of Thumb:
If $n>30$, the Central Limit Theorem can be used for computation.

Practice problems

Example

Problem

The tip percentage at a restaurant has a mean value of 18% and a standard deviation of 6\%.

What is the approximate probability that the sample mean tip percentage for a random sample of 40 bills is between 16% and 19\%?

Example

Problem

The time that it takes a randomly selected rat of a certain subspecies to find its way through a maze is a normally distributed random variable with mean $\mu=1.5$ (minutes) and standard deviation $\sigma=.35$ (minutes).
Suppose five rats are selected. Let $X_{1}, X_{2}, \ldots, X_{5}$ denote their times in the maze. Assuming the $X_{i}^{\prime} s$ to be a random sample from this normal distribution, what is the probability that the total time for the five

$$
T=X_{1}+X_{2}+X_{3}+X_{4}+X_{5}
$$

is between 6 and 8 minutes.

Example

Problem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be random sample from a normally distribution with mean 2.65 and standard deviation 0.85 .

- If $n=25$, compute

$$
P[\bar{X} \leq 3]
$$

- Find n such that

$$
P[\bar{X} \leq 3] \geq 0.95
$$

Example

Problem

Let X be a random sample from the exponential distribution

$$
f(x)= \begin{cases}e^{-x} & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

Compute

$$
E\left[e^{-X}\right]
$$

Example

Problem

Let X be a random sample from the exponential distribution

$$
f(x)= \begin{cases}e^{-x} & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

Compute

$$
E\left[e^{X / 2}\right]
$$

Example

Problem

Let X be a random sample from the exponential distribution

$$
f(x)= \begin{cases}e^{-x} & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

Compute

$$
E\left[e^{t X}\right]
$$

for $t<1$.

Moment generating function

Definition

The moment generating function (mgf) of a continuous random variable X is

$$
M_{X}(t)=E\left(e^{t X}\right)=\int_{-\infty}^{\infty} e^{t x} f_{X}(x) d x
$$

- Reading: 3.4 and 4.2
- In our previous example

$$
M_{X}(t)=\frac{1}{1-t} \quad \text { if } t<1
$$

