Mathematical statistics

September $18^{\text {th }}, 2018$
Lecture 7: Introduction to parameter estimation

Week 1	Probability reviews
Week 2	Chapter 6: Statistics and Sampling Distributions
Week 4	Chapter 7: Point Estimation
Week 7	Chapter 8: Confidence Intervals
Week 10	Chapter 9: Test of Hypothesis
Week 14	Regression

Overview

7.1 Point estimate

- unbiased estimator
- mean squared error
7.2 Methods of point estimation
- method of moments
- method of maximum likelihood.
7.3 Sufficient statistic
7.4 Information and Efficiency
- Large sample properties of the maximum likelihood estimator
- Bootstrap

Mathematical modelling

- In a mathematical model, parameters are used to define a whole family of functions that relate the inputs and the outputs
- Example:

$$
y=a x+b
$$

represents a family of linear functions parameterized by (a, b)

- Parameter estimation: from collected data, determine the values of the parameter

Deterministic modelling vs. Stochastic modelling

$y=$ Product sales

Mathematical model:

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, \quad \epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Question of this chapter

- Given a random sample X_{1}, \ldots, X_{n} from a distribution with pmf/pdf $f(x, \theta)$ parameterized by a parameter θ
- Goal: Estimate θ

Example 1

- Setting: I'm running for president of the US
- I want to estimate how many people support me

- Denote
- A: the total number of people who will vote for me
- B: the total number of people who will not

$$
p=\frac{A}{A+B}
$$

is an unknown quantity that I'm interested in

Step 1: Random sample

- Choose one random person.
- Record the response by a random variable X
- Yes $\rightarrow X=1$
- No $\rightarrow X=0$
- The pmf of X is as follows

x	0	1
$p(x)$	$1-p$	p

- Repeat 2000 times \rightarrow a sample $X_{1}, X_{2}, \ldots, X_{2000}$
- Obtained data: $x_{1}=1, x_{2}=0, \ldots, x_{2000}=1$
- Summary statistics: $n_{y e s}=1200, n_{n o}=800$
- Question: What is a good estimate of p ?

Step 2: Analysis

- A good estimate of p is

$$
\hat{p}=\frac{n_{\text {yes }}}{n}=\frac{1200}{2000}=0.6
$$

Step 2: Analysis

- A good estimate of p is

$$
\hat{p}=\frac{n_{\text {yes }}}{n}=\frac{1200}{2000}=0.6
$$

- A more proper way to write \hat{p}

$$
\hat{p}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}=\bar{X}
$$

- The strong law of large number

$$
\hat{p}=\bar{X} \approx E[X]
$$

and

$$
E[X]=p .1+(1-p) .0=p
$$

Step 2: Analysis

Central Limit Theorem: $(n>40)$

$$
P\left[-1.96 \leq \frac{\hat{p}-E[X]}{\sigma_{X} / \sqrt{n}} \leq 1.96\right]=95 \%
$$

or

$$
P\left[p-1.96 \frac{1}{\sqrt{n}} \sqrt{p(1-p)} \leq \hat{p} \leq p-1.96 \frac{1}{\sqrt{n}} \sqrt{p(1-p)}\right]=95 \%
$$

Step 2: Analysis

- Simplified expression:

$$
P\left[\hat{p}-1.96 \frac{\hat{p}(1-\hat{p})}{\sqrt{n}} \leq p \leq \hat{p}+1.96 \frac{\hat{p}(1-\hat{p})}{\sqrt{n}}\right]=95 \%
$$

- Plug $\hat{p}=0.6$ in, we can say

$$
0.579 \leq p \leq 0.621
$$

with 95% confidence

Example 2: Private learning

- I want to estimate the number of UD students who have used drugs in the last 6 months

- Denote
- A: the total number of people who have used drugs
- B: the total number of people who have not

$$
p=\frac{A}{A+B}
$$

is an unknown quantity of interest

Step 1: Random sample

- Choose one random person. Denote their unknown true response by X

x	0	1
$p(x)$	$1-p$	p

- Give them a biased coin that turns head 55% of the time

z	tail	head
$p(z)$	0.45	0.55

- Ask the person to toss the coin, see the outcome and does not show it to anyone
- tail \rightarrow tell the truth
- head \rightarrow lie
- The outcome is recorded by a random variable Y

Step 1: Random sample

- Repeat 2000 times \rightarrow a sample $Y_{1}, Y_{2}, \ldots, Y_{2000}$
- Obtained data: $y_{1}=1, y_{2}=0, \ldots, y_{2000}=1$
- Summary statistics: $n_{y e s}=1080, n_{n o}=920$
- Question: What is a good estimate of p ?

