Mathematical statistics

September 20th, 2018

Lecture 8: Point Estimation

Where are we?

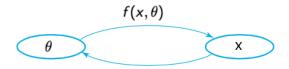
Week 1 · · · · ·	Probability reviews
Week 2 · · · · ·	Chapter 6: Statistics and Sampling Distributions
Week 4 · · · · ·	Chapter 7: Point Estimation
Week 7 · · · ·	Chapter 8: Confidence Intervals
Week 10 · · · ·	Chapter 9: Test of Hypothesis
Week 14 · · · · ·	Regression

Overview

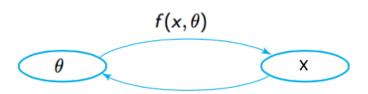
- 7.1 Point estimate
 - unbiased estimator
 - mean squared error
- 7.2 Methods of point estimation
 - method of moments
 - method of maximum likelihood.
- 7.3 Sufficient statistic
- 7.4 Information and Efficiency
 - Large sample properties of the maximum likelihood estimator
 - Bootstrap

Question of this chapter

- Given a random sample X_1, \ldots, X_n from a distribution with pmf/pdf $f(x, \theta)$ parameterized by a parameter θ
- Goal: Estimate θ



Point estimate



Definition

A point estimate $\hat{\theta}$ of a parameter θ is a single number that can be regarded as a sensible value for θ .

population parameter
$$\Longrightarrow$$
 sample \Longrightarrow estimate $\theta \Longrightarrow X_1, X_2, \dots, X_n \Longrightarrow \hat{\theta}$

Example

Problem

Consider a random sample X_1, \ldots, X_{10} from the pdf

$$f(x) = \frac{1 + \theta x}{2} \qquad -1 \le x \le 1$$

Assume that the obtained data are

$$0.92,\ -0.1,\ -0.2,\ 0.75,\ 0.65,\ -0.53$$

$$0.36, -0.68, 0.97, -0.33, 0.79$$

Provide an estimate of θ .

Mean Squared Error

Measuring error of estimation

$$|\hat{\theta} - \theta|$$
 or $(\hat{\theta} - \theta)^2$

The error of estimation is random

Definition

The mean squared error of an estimator $\hat{\theta}$ is

$$E[(\hat{\theta} - \theta)^2]$$

MATH 350 review

Problem

Let Y be a random variable and a is a constant. Prove that

$$E[(Y - a)^2] = Var(Y) + (E[Y] - a)^2$$

Hint: Recall that

$$Var[Y] = E[Y^2] - (E[Y])^2$$

Bias-variance decomposition

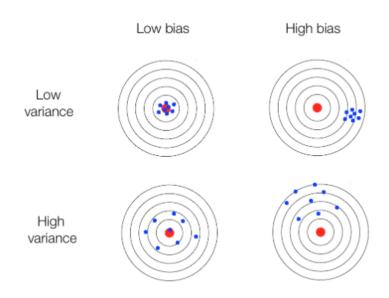
Theorem

$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2] = V(\hat{\theta}) + (E(\hat{\theta}) - \theta)^2$$

Bias-variance decomposition

Mean squared error = variance of estimator + $(bias)^2$

Bias-variance decomposition



Statistical bias vs. social bias

How things should be

Unbiased estimators

Definition

A point estimator $\hat{\theta}$ is said to be an unbiased estimator of θ if

$$E(\hat{\theta}) = \theta$$

for every possible value of θ .

Unbiased estimator

$$\Leftrightarrow$$
 Bias = 0

 \Leftrightarrow Mean squared error = variance of estimator

Sample proportion

 A test is done with probability of success p. Denote the outcome by let X (success: 1, failure: 0)

$$E[X] = p$$
, $Var[X] = p(1-p)$

- n independent tests are done, let X_1, X_2, \ldots, X_n be the outcomes
- Let

$$\hat{\rho} = \frac{X_1 + X_2 + \ldots + X_n}{n}$$

We know that

$$E[\hat{p}] = p$$

thus \hat{p} is an unbiased estimator

• Compute $MSE(\hat{p})$

Sample proportion

Let

$$\hat{\rho} = \frac{X_1 + X_2 + \ldots + X_n}{n}$$

$$MSE(\hat{p}) = Var(\hat{p}) + (bias)^{2}$$

$$= Var\left(\frac{X_{1} + X_{2} + \ldots + X_{n}}{n}\right)$$

$$= \frac{1}{n^{2}}(Var(X_{1}) + Var(X_{2}) + \ldots + Var(X_{n}))$$

$$= \frac{p(1-p)}{n}$$

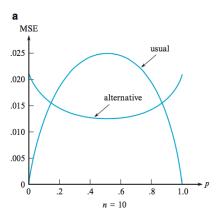
Sample proportion

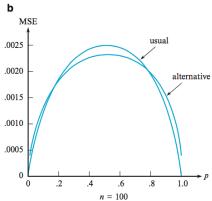
- A test is done with probability of success p
- n independent tests are done, let X_1, X_2, \ldots, X_n be the outcomes
- Strange idea: How about using

$$\tilde{p} = \frac{X_1 + X_2 + \ldots + X_n + 2}{n+4}$$

- What is the bias of \tilde{p} ?
- Compute $MSE(\tilde{p})$

Example 7.1 and 7.4





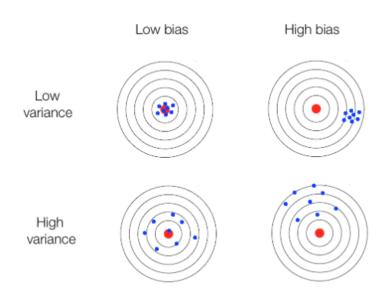
HW2-Problem 20

- A test is done with probability of success p
- n independent tests are done, let X_1, X_2, \dots, X_n be the outcomes
- Crazy idea: How about using

$$\tilde{p} = \frac{X_1 + X_2 + \ldots + X_n + \sqrt{n/4}}{n + \sqrt{n}}$$

This estimator is **always** better than the sample proportion \hat{p}

Bias-variance decomposition



Minimum variance unbiased estimator (MVUE)

Definition

Among all estimators of θ that are unbiased, choose the one that has minimum variance. The resulting $\hat{\theta}$ is called the minimum variance unbiased estimator (MVUE) of θ .

Recall:

- Mean squared error = variance of estimator $+ (bias)^2$
- unbiased estimator \Rightarrow bias =0
- \Rightarrow MVUE has minimum mean squared error among unbiased estimators