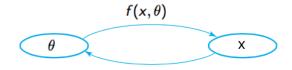
Mathematical statistics

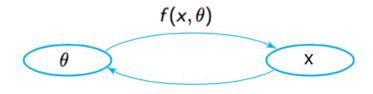
September 25th, 2018

Lecture 9: Point estimation - Method of moments

Mathematical statistics

Week 1 · · · · ·	Probability reviews
Week 2 · · · · ·	Chapter 6: Statistics and Sampling Distributions
Week 4 · · · · ·	Chapter 7: Point Estimation
Week 7 · · · · ·	Chapter 8: Confidence Intervals
Week 10 · · · · ·	Chapter 9: Test of Hypothesis
Week 14 · · · · ·	Regression


æ


▶ ★@ ▶ ★ 臣 ▶ ★ 臣 ▶

Overview

- 7.1 Point estimate
 - unbiased estimator
 - mean squared error
- 7.2 Methods of point estimation
 - method of moments
 - method of maximum likelihood.
- 7.3 Sufficient statistic
- 7.4 Information and Efficiency
 - Large sample properties of the maximum likelihood estimator
 - Bootstrap

- Given a random sample X_1, \ldots, X_n from a distribution with pmf/pdf $f(x, \theta)$ parameterized by a parameter θ
- Goal: Estimate θ

Definition

A point estimate $\hat{\theta}$ of a parameter θ is a single number that can be regarded as a sensible value for θ .

 $\begin{array}{ccc} \text{population parameter} \Longrightarrow & \textit{sample} & \Longrightarrow \textit{estimate} \\ \\ \theta & \Longrightarrow X_1, X_2, \dots, X_n \Longrightarrow & \hat{\theta} \end{array}$

- **→** → **→**

• Measuring error of estimation

$$|\hat{ heta} - heta|$$
 or $(\hat{ heta} - heta)^2$

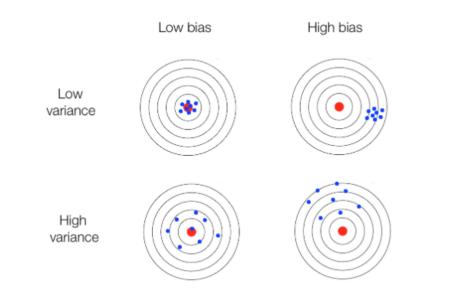
• The error of estimation is random

Definition

The mean squared error of an estimator $\hat{\theta}$ is

$$E[(\hat{\theta} - \theta)^2]$$

Mathematical statistics


Theorem

$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2] = V(\hat{\theta}) + (E(\hat{\theta}) - \theta)^2$$

Bias-variance decomposition

Mean squared error = variance of estimator + $(bias)^2$

Bias-variance decomposition

Mathematical statistics

æ

- ● ● ●

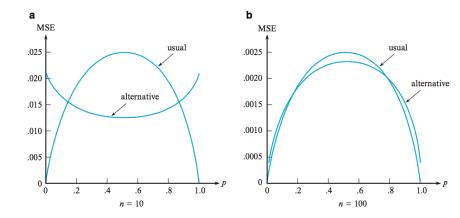
Definition

A point estimator $\hat{\theta}$ is said to be an unbiased estimator of θ if

$$E(\hat{\theta}) = \theta$$

for every possible value of θ .

Unbiased estimator \Leftrightarrow Bias = 0 \Leftrightarrow Mean squared error = variance of estimator


Consider a random sample X_1, \ldots, X_n from the pdf

$$f(x) = rac{1+ heta x}{2} \qquad -1 \leq x \leq 1$$

Show that $\hat{\theta} = 3\bar{X}$ is an unbiased estimator of θ .

- **→** → **→**

Example 7.1 and 7.4

э

- ● ● ●

æ

Definition

Among all estimators of θ that are unbiased, choose the one that has minimum variance. The resulting $\hat{\theta}$ is called the minimum variance unbiased estimator (MVUE) of θ .

Recall:

- Mean squared error = variance of estimator + $(bias)^2$
- unbiased estimator \Rightarrow bias =0

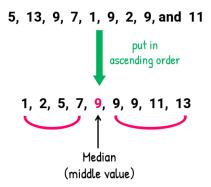
 \Rightarrow MVUE has minimum mean squared error among unbiased estimators

Estimators of the mean

æ

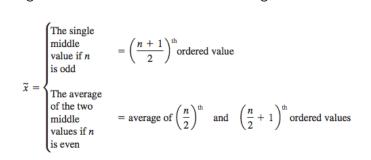
≣ ।•

・日・ ・ ヨ・・


- The sample mean
- The sample median
- Trimmed means

The sample mean \overline{x} of observations x_1, x_2, \ldots, x_n is given by

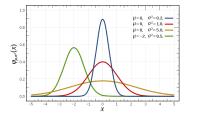
$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{\sum_{i=1}^n x_i}{n}$$

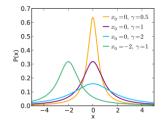

∄▶ ∢ ≣

Measures of locations: median

Median is not affected by outliers

Ordering the observations from smallest to largest

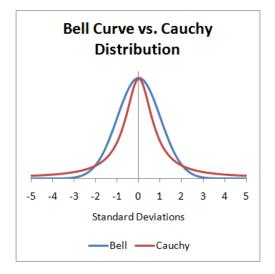

- A α % trimmed mean is computed by:
 - $\bullet\,$ eliminating the smallest $\alpha\%$ and the largest $\alpha\%$ of the sample
 - averaging what remains
- $\alpha = \mathbf{0} \rightarrow \mathbf{the} \ \mathbf{mean}$
- $\alpha \approx 50 \rightarrow$ the median


Fifteen air samples from a certain region were obtained, and for each one the carbon monoxide concentration was determined. The results (in ppm) were

> 19, 21, 17, 20, 24, 30, 18, 23, 19, 26, 22, 17, 27, 25, 22

- Find the sample mean
- **2** Find the sample median of the data set
- Ind the 20% trimmed mean


Question: Let X_1, \ldots, X_n be a random sample from a distribution with mean μ . What is the best estimator of μ ?


イロン イロン イヨン イヨン

æ

Mathematical statistics

Normal vs. Cauchy

Question: Let X_1, \ldots, X_n be a random sample from a distribution with mean μ . What is the best estimator of μ ?

Answer: It depends.

- Normal distribution ightarrow sample mean $ar{X}$
- Cauchy distribution ightarrow sample median $ilde{X}$
- \bullet Uniform distribution \rightarrow no tails, uniform

$$\hat{X}_e = rac{\mathsf{largest number} + \mathsf{smaller number}}{2}$$

• In all cases, 10% trimmed mean performs pretty well

Theorem

Let X_1, \ldots, X_n be a random sample from a normal distribution with mean μ . Then the estimator $\hat{\mu} = \overline{X}$ is the MVUE for μ .

Mathematical statistics

Method of moments

Mathematical statistics

æ

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

- Let X_1, \ldots, X_n be a random sample from a normal distribution with pmf or pdf f(x).
- For k = 1, 2, 3, ..., the kth population moment, or kth moment of the distribution f(x), is

$$E(X^k)$$

- First moment: the mean
- Second moment: $E(X^2)$

Sample moments

- Let X_1, \ldots, X_n be a random sample from a distribution with pmf or pdf f(x).
- For $k = 1, 2, 3, \ldots$, the k^{th} sample moment is

$$\frac{X_1^k + X_2^k + \ldots + X_n^k}{n}$$

The law of large numbers provides that when $n \to \infty$

$$\frac{X_1^k + X_2^k + \ldots + X_n^k}{n} \to E(X^k)$$

• Let X_1, \ldots, X_n be a random sample from a distribution with pmf or pdf

$$f(x; \theta_1, \theta_2, \ldots, \theta_m)$$

• Assume that for $k = 1, \ldots, m$

$$\hat{u}_k = \frac{X_1^k + X_2^k + \ldots + X_n^k}{n} = E(X^k)$$

• Solve the system of equations for $\theta_1, \theta_2, \ldots, \theta_m$

Let X_1, \ldots, X_{10} be a random sample from the exponential distribution with parameter λ , that is

$$f(x;\lambda) = \lambda e^{-\lambda x}, \quad x \ge 0$$

The observed data are

3.11, 0.64, 2.55, 2.20, 5.44,

3.42, 1.39, 8.13, 1.82, 1.30

Use the method of moments to obtain an estimator of λ .

• Equation: k = 1

$$\bar{X} = \frac{X_1 + X_2 + \ldots + X_n}{n} = E(X) = \frac{1}{\lambda}$$

• Solve the system of equations for λ

$$\lambda = \frac{1}{\bar{X}}$$

Suppose that for a parameter $0 \le \theta \le 1$, X is the outcome of the roll of a four-sided tetrahedral die

Suppose the die is rolled 10 times with outcomes

4, 1, 2, 3, 1, 2, 3, 4, 2, 3

Use the method of moments to obtain an estimator of θ .

Let X_1, \ldots, X_{10} be a random sample from a distribution with pdf

$$f(x) = egin{cases} (heta+1) x^ heta & ext{if } 0 \leq x \leq 1 \ 0 & ext{otherwise} \end{cases}$$

A random sample of ten students yields data

$$x_1 = .92, \ x_2 = .79, \ x_3 = .90, \ x_4 = .65, \ x_5 = .86,$$

$$x_6 = .47, x_7 = .73, x_8 = .97, x_9 = .94, x_{10} = .77$$

Use the method of moments to obtain an estimator of θ .

Let X_1, \ldots, X_n be a random sample from the normal distribution $\mathcal{N}(0, \sigma^2)$. Use the method of moments to obtain an estimator of σ .

Let $\beta > 1$ and X_1, \ldots, X_n be a random sample from a distribution with pdf

$$f(x) = egin{cases} rac{eta}{x^{eta+1}} & ext{if } x > 1 \ 0 & ext{otherwise} \end{cases}$$

Use the method of moments to obtain an estimator of β .