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Where are we?

Week 1 · · · · · ·• Probability reviews

Week 2 · · · · · ·• Chapter 6: Statistics and Sampling
Distributions

Week 4 · · · · · ·• Chapter 7: Point Estimation

Week 7 · · · · · ·• Chapter 8: Confidence Intervals

Week 10 · · · · · ·• Chapter 9: Test of Hypothesis

Week 14 · · · · · ·• Regression
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Overview

7.1 Point estimate

unbiased estimator
mean squared error

7.2 Methods of point estimation

method of moments
method of maximum likelihood.

7.3 Sufficient statistic

7.4 Information and Efficiency

Large sample properties of the maximum likelihood estimator
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Point estimate

Definition

A point estimate θ̂ of a parameter θ is a single number that can be
regarded as a sensible value for θ.

population parameter =⇒ sample =⇒ estimate

θ =⇒ X1,X2, . . . ,Xn =⇒ θ̂

Mathematical statistics



Method of maximum likelihood
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Random sample

Let X1,X2, ...,Xn be a random sample of size n from a distribution
with density function fX (x).

Then the density of the joint distribution of (X1,X2, ...,Xn) is

fjoint(x1, x2, . . . , xn) =
n∏

i=1

fX (xi )
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Maximum likelihood estimator

Let X1,X2, ...,Xn have joint pmf or pdf

fjoint(x1, x2, . . . , xn; θ)

where θ is unknown.

When x1, . . . , xn are the observed sample values and this
expression is regarded as a function of θ, it is called the
likelihood function.

The maximum likelihood estimates θML are the value for θ
that maximize the likelihood function:

fjoint(x1, x2, . . . , xn; θML) ≥ fjoint(x1, x2, . . . , xn; θ) ∀θ
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How to find the MLE?

Step 1: Write down the likelihood function.

Step 2: Can you find the maximum of this function?

Step 3: Try taking the logarithm of this function.

Step 4: Find the maximum of this new function.

To find the maximum of a function of θ:

compute the derivative of the function with respect to θ

set this expression of the derivative to 0

solve the equation
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Example

Problem

Let X1, . . . ,Xn be a random sample from the normal distribution
N (0, σ2), that is

f (x , θ) =
1

σ
√

2π
e−

x2

2σ2

Use the method of maximum likelihood to obtain an estimator of σ
(as a function of the data x1, x2, . . . , xn).
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Example

Problem

Let β > 1 and X1, . . . ,Xn be a random sample from a distribution
with pdf

f (x) =

{
β

xβ+1 if x > 1

0 otherwise

Use the method of maximum likelihood to obtain an estimator of
β.
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Sufficient statistic
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Example

Your professor stores a dataset x1, x2, ..., xn in his computer.
He says it is a random sample from the exponential
distribution

fX (x) = λe−λx , x ≥ 0

where λ is an unknown parameter. He wants you to work on
the dataset and give him a good estimate of λ

Assume that the sample size is very large, n = 1020, and you
could not copy the whole dataset

You can compute any summary statistics of the dataset using
the computer, but the lab is closing in 5 minutes

What will you do?
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Example

If you are using the method of moments

x̄ =
x1 + x2 + . . .+ xn

n

If you are using the method of maximum likelihood

L(λ) = λne−λ(x1+x2+...+xn)

In both case, it seems that you need to only save n and
t = x1 + x2 + . . .+ xn
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Conditional probability

For discrete random variables, the conditional probability mass
function of Y given the occurrence of the value x of X can be
written according to its definition as:

P(Y = y |X = x) =
P(Y = y ,X = x)

P(X = x)

For continuous random variables, the conditional probability
of Y given the occurrence of the value x of X has density
function

fY (y |X = x) =
fjoint(y , x)

f (x)
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Some observations

Basic estimation problem:

Given a density function f (x , θ) and a sample X1,X2, . . . ,Xn

Construct a statistic θ̂ = T (X1,X2, . . . ,Xn)
Different statistic t leads different estimate, different
accuracies

If, however, the distribution of t(X1,X2, . . . ,Xn) does not
depend on θ, then it is no good

Similarly, if the conditional probability

P(X1,X2, . . . ,Xn|T )

does not depend on θ, then this means that
T (X1,X2, . . . ,Xn) contained all the information to estimate θ
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Sufficient statistic

Definition

A statistic T = t(X1, . . . ,Xn) is said to be sufficient for making
inferences about a parameter θ if the joint distribution of
X1,X2, . . . ,Xn given that T = t does not depend upon θ for every
possible value t of the statistic T .
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Fisher-Neyman factorization theorem

Theorem

T is sufficient for if and only if nonnegative functions g and h can
be found such that

f (x1, x2, . . . , xn; θ) = g(t(x1, x2, . . . , xn), θ) · h(x1, x2, . . . , xn)

i.e. the joint density can be factored into a product such that one
factor, h does not depend on θ; and the other factor, which does
depend on θ, depends on x only through t(x).
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Example

Let X1,X2, ...,Xn be a random sample of from a Poisson
distribution with parameter λ

f (x , λ) =
1

x!
e−λx x = 0, 1, 2, . . . ,

where λ is unknown.

Find a sufficient statistic of λ.
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Jointly sufficient statistic

Definition

The m statistics T1 = t1(X1, . . . ,Xn), T2 = t2(X1, . . . ,Xn), . . .,
Tm = tm(X1, . . . ,Xn) are said to be jointly sufficient for the
parameters θ1, θ2, . . . , θk if the joint distribution of X1,X2, . . . ,Xn

given that
T1 = t1,T2 = t2, . . . ,Tm = tm

does not depend upon θ1, θ2, . . . , θk for every possible value
t1, t2, . . . , tm of the statistics.
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Fisher-Neyman factorization theorem

Theorem

T1,T2, . . . ,Tm are sufficient for θ1, θ2, . . . , θk if and only if
nonnegative functions g and h can be found such that

f (x1, x2, . . . , xn; θ1, θ2, . . . , θk) = g(t1, t2, . . . , tm, θ1, θ2, . . . , θk)

· h(x1, x2, . . . , xn)
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Example 3

Let X1,X2, ...,Xn be a random sample from N (µ, σ2)

fX (x) =
1√
2πσ

e−
(x−µ)2

2σ2

Prove that

T1 = X1 + . . .+ Xn, T2 = X 2
1 + X 2

2 + . . .+ X 2
n

are jointly sufficient for the two parameters µ and σ.
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Example 4

Let X1,X2, ...,Xn be a random sample from a Gamma
distribution

fX (x) =
1

Γ(α)βα
xα−1e−x/β

where α, β is unknown.

Prove that

T1 = X1 + . . .+ Xn, T2 =
n∏

i=1

Xi

are jointly sufficient for the two parameters α and β.
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