Mathematical statistics

October 4th, 2018

Lecture 12: Information

Mathematical statistics

э

Week 1 · · · · ·	Probability reviews
Week 2 · · · · ·	Chapter 6: Statistics and Sampling Distributions
Week 4 · · · · ·	Chapter 7: Point Estimation
Week 7 · · · · ·	Chapter 8: Confidence Intervals
Week 10 · · · · ·	Chapter 9: Test of Hypothesis
Week 14 · · · · ·	Regression

æ

▶ ★@ ▶ ★ 臣 ▶ ★ 臣 ▶

Overview

7.1 Point estimate

- unbiased estimator
- mean squared error
- 7.2 Methods of point estimation
 - method of moments
 - method of maximum likelihood.
- 7.3 Sufficient statistic

7.4 Information and Efficiency

• Large sample properties of the maximum likelihood estimator

Sufficient statistic

Mathematical statistics

æ

・聞き ・ ほき・ ・ ほき

Definition

A statistic $T = t(X_1, ..., X_n)$ is said to be sufficient for making inferences about a parameter θ if the joint distribution of $X_1, X_2, ..., X_n$ given that T = t does not depend upon θ for every possible value t of the statistic T.

T is sufficient for if and only if nonnegative functions g and h can be found such that

$$f(x_1, x_2, \ldots, x_n; \theta) = g(t(x_1, x_2, \ldots, x_n), \theta) \cdot h(x_1, x_2, \ldots, x_n)$$

i.e. the joint density can be factored into a product such that one factor, h does not depend on θ ; and the other factor, which does depend on θ , depends on x only through t(x).

Let X₁, X₂, ..., X_n be a random sample of from a Poisson distribution with parameter λ

$$f(x,\lambda) = \frac{1}{x!}e^{-\lambda x} \qquad x = 0, 1, 2, \dots,$$

where λ is unknown.

• Find a sufficient statistic of λ .

Definition

The *m* statistics $T_1 = t_1(X_1, \ldots, X_n)$, $T_2 = t_2(X_1, \ldots, X_n)$, ..., $T_m = t_m(X_1, \ldots, X_n)$ are said to be jointly sufficient for the parameters $\theta_1, \theta_2, \ldots, \theta_k$ if the joint distribution of X_1, X_2, \ldots, X_n given that

$$T_1=t_1, T_2=t_2,\ldots, T_m=t_m$$

does not depend upon $\theta_1, \theta_2, \ldots, \theta_k$ for every possible value t_1, t_2, \ldots, t_m of the statistics.

 T_1, T_2, \ldots, T_m are sufficient for $\theta_1, \theta_2, \ldots, \theta_k$ if and only if nonnegative functions g and h can be found such that

$$f(x_1, x_2, \ldots, x_n; \theta_1, \theta_2, \ldots, \theta_k) = g(t_1, t_2, \ldots, t_m, \theta_1, \theta_2, \ldots, \theta_k)$$
$$\cdot h(x_1, x_2, \ldots, x_n)$$

Problem

Let $X_1, X_2, ..., X_n$ be a random sample from $\mathcal{N}(\mu, \sigma^2)$

$$f_X(x) = \frac{1}{\sqrt{2\pi\sigma}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Prove that

$$T_1 = X_1 + \ldots + X_n, \qquad T_2 = X_1^2 + X_2^2 + \ldots + X_n^2$$

are jointly sufficient for the two parameters μ and σ .

- ● ● ●

Problem

Let $X_1, X_2, ..., X_n$ be a random sample from a Gamma distribution

$$f_X(x) = \frac{1}{\Gamma(\alpha)\beta^{lpha}} x^{lpha-1} e^{-x/eta}$$

where α,β is unknown. Prove that

$$T_1 = X_1 + \ldots + X_n, \qquad T_2 = X_1 \cdot X_2 \cdot \ldots \cdot X_n$$

are jointly sufficient for the two parameters α and β .

Information

Mathematical statistics

æ

Definition

The Fisher information $I(\theta)$ in a single observation from a pmf or pdf $f(x; \theta)$ is the variance of the random variable $U = \frac{\partial \log f(X, \theta)}{\partial \theta}$, which is

$$I(\theta) = Var \left[\frac{\partial \log f(X, \theta)}{\partial \theta} \right]$$

Note: We always have E[U] = 0

Fisher information

We have

$$\sum_{x} f(x,\theta) = 1 \quad \forall \theta$$

Thus

$$E[U] = E\left[\frac{\partial \log f(X,\theta)}{\partial \theta}\right]$$
$$= \sum_{x} \frac{\partial \log f(x,\theta)}{\partial \theta} f(x,\theta)$$
$$= \sum_{x} \frac{\partial f(x,\theta)}{\partial \theta} = 0$$

æ

▶ < ≣ ▶</p>

Problem

Let X be distributed by

$$\begin{array}{c|cc} x & 0 & 1 \\ \hline f(x,\theta) & 1-\theta & \theta \end{array}$$

Compute $I(X, \theta)$.

Hint:

• If
$$x = 1$$
, then $f(x, \theta) = \theta$. Thus

$$u(x) = \frac{\partial \log f(x,\theta)}{\partial \theta} = \frac{1}{\theta}$$

• How about x = 0?

Example

Problem

Let X be distributed by

$$\begin{array}{c|c} x & 0 & 1 \\ \hline f(x,\theta) & 1-\theta & \theta \end{array}$$

Compute $I(X, \theta)$.

We have

$$Var[U] = E[U^2] - (E[U])^2 = E[U^2]$$
$$= \sum_{x=0,1} U^2(x)f(x,\theta)$$
$$= \frac{1}{(1-\theta)^2} \cdot (1-\theta) + \frac{1}{\theta^2} \cdot \theta$$

æ

Assume a random sample $X_1, X_2, ..., X_n$ from the distribution with pmf or pdf $f(x, \theta)$ such that the set of possible values does not depend on θ . If the statistic $T = t(X_1, X_2, ..., X_n)$ is an unbiased estimator for the parameter θ , then

$$Var(T) \geq rac{1}{n \cdot I(heta)}$$

Let $T = t(X_1, X_2, ..., X_n)$ is an unbiased estimator for the parameter θ , the ratio of the lower bound to the variance of T is its efficiency

$$Efficiency = \frac{1}{nI(\theta)V(T)} \le 1$$

T is said to be an efficient estimator if *T* achieves the CramerRao lower bound (i.e., the efficiency is 1).

Note: An efficient estimator is a minimum variance unbiased (MVUE) estimator.

Given a random sample $X_1, X_2, ..., X_n$ from the distribution with pmf or pdf $f(x, \theta)$ such that the set of possible values does not depend on θ . Then for large n the maximum likelihood estimator $\hat{\theta}$ has approximately a normal distribution with mean θ and variance $\frac{1}{n \cdot I(\theta)}$. More precisely, the limiting distribution of $\sqrt{n}(\hat{\theta} - \theta)$ is normal

with mean 0 and variance $1/I(\theta)$.

Let $X_1, X_2, ..., X_n$ be a random sample from a distribution with mean μ and variance σ^2 . Then, in the limit when $n \to \infty$, the standardized version of \overline{X} have the standard normal distribution

$$\lim_{n\to\infty} \mathbb{P}\left(\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \leq z\right) = \mathbb{P}[Z \leq z] = \Phi(z)$$

Chapter 7: Summary

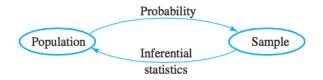
Mathematical statistics

P.

æ

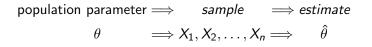
Overview

- 7.1 Point estimate
 - unbiased estimator
 - mean squared error
 - bootstrap
- 7.2 Methods of point estimation
 - method of moments
 - method of maximum likelihood.
- 7.3 Sufficient statistic
- 7.4 Information and Efficiency
 - Large sample properties of the maximum likelihood estimator



Definition

A point estimate $\hat{\theta}$ of a parameter θ is a single number that can be regarded as a sensible value for θ .



・ 同 ト ・ ヨ ト ・ ヨ ト

• Measuring error of estimation

$$|\hat{ heta} - heta|$$
 or $(\hat{ heta} - heta)^2$

• The error of estimation is random

Definition

The mean squared error of an estimator $\hat{\theta}$ is

$$E[(\hat{\theta} - \theta)^2]$$

Mathematical statistics

$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2] = V(\hat{\theta}) + (E(\hat{\theta}) - \theta)^2$$

Bias-variance decomposition

Mean squared error = variance of estimator + $(bias)^2$

Definition

A point estimator $\hat{\theta}$ is said to be an unbiased estimator of θ if

$$E(\hat{\theta}) = \theta$$

for every possible value of θ .

Unbiased estimator \Leftrightarrow Bias = 0 \Leftrightarrow Mean squared error = variance of estimator

Problem

Consider a random sample X_1, \ldots, X_n from the pdf

$$f(x) = rac{1+ heta x}{2} \qquad -1 \leq x \leq 1$$

Show that $\hat{\theta} = 3\bar{X}$ is an unbiased estimator of θ .

- **→** → **→**

Overview

- 7.1 Point estimate
 - unbiased estimator
 - mean squared error
 - bootstrap
- 7.2 Methods of point estimation
 - method of moments
 - method of maximum likelihood.
- 7.3 Sufficient statistic
- 7.4 Information and Efficiency
 - Large sample properties of the maximum likelihood estimator

• Let X_1, \ldots, X_n be a random sample from a distribution with pmf or pdf

$$f(x; \theta_1, \theta_2, \ldots, \theta_m)$$

• Assume that for $k = 1, \ldots, m$

$$\frac{X_1^k + X_2^k + \ldots + X_n^k}{n} = E(X^k)$$

• Solve the system of equations for $\theta_1, \theta_2, \ldots, \theta_m$

Problem

Suppose that for a parameter $0 \le \theta \le 1$, X is the outcome of the roll of a four-sided tetrahedral die

Suppose the die is rolled 10 times with outcomes

4, 1, 2, 3, 1, 2, 3, 4, 2, 3

Use the method of moments to obtain an estimator of θ .

Maximum likelihood estimator

• Let $X_1, X_2, ..., X_n$ have joint pmf or pdf

$$f_{joint}(x_1, x_2, \ldots, x_n; \theta)$$

where θ is unknown.

- When x₁,..., x_n are the observed sample values and this expression is regarded as a function of θ, it is called the likelihood function.
- The maximum likelihood estimates θ_{ML} are the value for θ that maximize the likelihood function:

$$f_{joint}(x_1, x_2, \dots, x_n; \theta_{ML}) \ge f_{joint}(x_1, x_2, \dots, x_n; \theta) \quad \forall \theta$$

- Step 1: Write down the likelihood function.
- Step 2: Can you find the maximum of this function?
- Step 3: Try taking the logarithm of this function.
- Step 4: Find the maximum of this new function.

To find the maximum of a function of θ :

- $\bullet\,$ compute the derivative of the function with respect to $\theta\,$
- set this expression of the derivative to 0
- solve the equation

• Let X_1, \ldots, X_{10} be a random sample of size n = 10 from a distribution with pdf

$$f(x) = egin{cases} (heta+1) x^ heta & ext{if } 0 \leq x \leq 1 \ 0 & ext{otherwise} \end{cases}$$

• The observed x_i's are

0.92, 0.79, 0.90, 0.65, 0.86, 0.47, 0.73, 0.97, 0.94, 0.77

• Question: Use the method of maximum likelihood to obtain an estimator of θ .

Overview

- 7.1 Point estimate
 - unbiased estimator
 - mean squared error
 - bootstrap
- 7.2 Methods of point estimation
 - method of moments
 - method of maximum likelihood.
- 7.3 Sufficient statistic
- 7.4 Information and Efficiency
 - Large sample properties of the maximum likelihood estimator

T is sufficient for if and only if nonnegative functions g and h can be found such that

$$f(x_1, x_2, \ldots, x_n; \theta) = g(t(x_1, x_2, \ldots, x_n), \theta) \cdot h(x_1, x_2, \ldots, x_n)$$

i.e. the joint density can be factored into a product such that one factor, h does not depend on θ ; and the other factor, which does depend on θ , depends on x only through t(x).

Definition

The Fisher information $I(\theta)$ in a single observation from a pmf or pdf $f(x; \theta)$ is the variance of the random variable $U = \frac{\partial \log f(X, \theta)}{\partial \theta}$, which is

$$I(\theta) = Var\left[\frac{\partial \log f(X,\theta)}{\partial \theta}\right]$$

Note: We always have E[U] = 0.

Assume a random sample $X_1, X_2, ..., X_n$ from the distribution with pmf or pdf $f(x, \theta)$ such that the set of possible values does not depend on θ . If the statistic $T = t(X_1, X_2, ..., X_n)$ is an unbiased estimator for the parameter θ , then

$$V(T) \geq rac{1}{n \cdot I(heta)}$$

Given a random sample $X_1, X_2, ..., X_n$ from the distribution with pmf or pdf $f(x, \theta)$ such that the set of possible values does not depend on θ . Then for large n the maximum likelihood estimator $\hat{\theta}$ has approximately a normal distribution with mean θ and variance $\frac{1}{n \cdot l(\theta)}$. More precisely, the limiting distribution of $\sqrt{n}(\hat{\theta} - \theta)$ is normal

with mean 0 and variance $1/I(\theta)$.