Mathematical statistics

October 9th, 2018

Lecture 13: Confidence intervals

Mathematical statistics

э

Week 1 · · · · ·	Probability reviews
Week 2 · · · · •	Chapter 6: Statistics and Sampling Distributions
Week 4 · · · · ·	Chapter 7: Point Estimation
Week 7 · · · · •	Chapter 8: Confidence Intervals
	Chapter 8: Confidence Intervals Chapter 9: Test of Hypothesis

æ

<ロト <部ト < 注ト < 注ト

8.1 Basic properties of confidence intervals (CIs)

- Interpreting Cls
- General principles to derive CI
- 8.2 Large-sample confidence intervals for a population mean
 - Using the Central Limit Theorem to derive CIs
- 8.3 Intervals based on normal distribution
 - Using Student's t-distribution
- 8.4 CIs for standard deviation

Confidence Intervals

Mathematical statistics

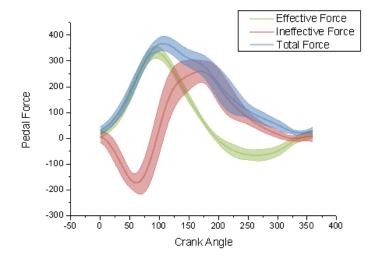
æ

□ ▶ ▲ 臣 ▶ ▲ 臣 ▶

- Let $X_1, X_2, ..., X_n$ be a random sample from a distribution $f(x, \theta)$
- In Chapter 7, we learnt methods to construct an estimate $\hat{\theta}$ of θ
- Goal: we want to indicate the degree of uncertainty associated with this random prediction
- One way to do so is to construct a *confidence interval* $[\hat{\theta} a, \hat{\theta} + b]$ such that

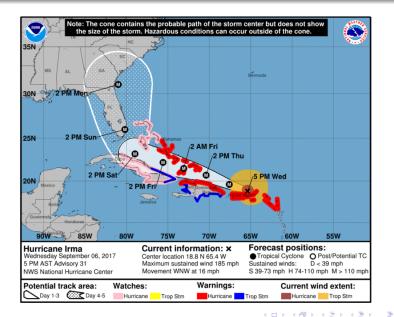
$$P[heta \in [\hat{ heta} - a, \hat{ heta} + b]] = 95\%$$

Confidence interval



P

Confidence region



If X_1, X_2, \ldots, X_n is a random sample from a distribution $f(x, \theta)$, then

- Find a random variable $Y = h(X_1, X_2, ..., X_n; \theta)$ such that the probability distribution of Y does not depend on θ or on any other unknown parameters.
- Find constants *a*, *b* such that

$$P[a < h(X_1, X_2, \dots, X_n; \theta) < b] = 0.95$$

• Manipulate these inequality to isolate θ

$$P[\ell(X_1, X_2, \dots, X_n) < \theta < u(X_1, X_2, \dots, X_n)] = 0.95$$

Suppose the sediment density (g/cm) of a randomly selected specimen from a certain region is normally distributed with mean μ and standard deviation 0.85.

If a random sample of 25 specimens is selected, with sample average \bar{X} .

• Find a number a such that

$$P[-a < \bar{X} - \mu < a] = 0.95$$

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9278	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767

Table A.3 Standard Normal Curve Areas (cont.)

 $\Phi(z) = P(Z \le z)$

Mathematical statistics

æ

Suppose the sediment density (g/cm) of a randomly selected specimen from a certain region is normally distributed with mean μ and standard deviation 0.85.

• If a random sample of 25 specimens is selected, with sample average \bar{X} . Find a such that

$$P[-a < \bar{X} - \mu < a] = 0.95$$

If $\bar{x} = 2.65$, then we know with confidence 95% that

$$\mu \in (2.65 - a, 2.65 + a)$$

 \rightarrow This is a confidence interval for the population mean μ

Suppose the sediment density (g/cm) of a randomly selected specimen from a certain region is normally distributed with mean μ and standard deviation 0.85.

If a random sample of 25 specimens is selected, with sample average \bar{X} . Find a number b such that

$$P[\bar{X} < b] = 0.95$$

95% confidence interval

- Assumptions:
 - Normal distribution
 - σ is known
- 95% confidence interval If after observing X₁ = x₁, X₂ = x₂,..., X_n = x_n, we compute the observed sample mean x̄. Then

$$\left(ar{x}-1.96rac{\sigma}{\sqrt{n}},ar{x}+1.96rac{\sigma}{\sqrt{n}}
ight)$$

is a 95% confidence interval of μ

- Section 8.1
 - Normal distribution
 - σ is known
- Section 8.2
 - Normal distribution
 - σ is known
 - \rightarrow Using Central Limit Theorem \rightarrow needs n>30
- Section 8.3
 - Normal distribution
 - σ is known
 - \rightarrow Introducing *t*-distribution

Suppose the sediment density (g/cm) of a randomly selected specimen from a certain region is normally distributed with mean μ and standard deviation 0.85. If a random sample of 25 specimens is selected, with sample average $\bar{x} = 2.65$. Find the confidence interval with confidence level 99%.

Hint: Find the number a such that

$$P[-a < \bar{X} - \mu < a] = 0.99$$

$100(1-\alpha)\%$ confidence interval

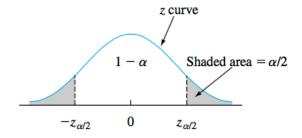


Figure 8.4 $P(-z_{\alpha/2} \le Z \le z_{\alpha/2}) = 1 - \alpha$

Mathematical statistics

・ 同 ト ・ ヨ ト ・ ヨ ト

3

					· · · · ·				×~ × ~	
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9278	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997

≡▶ ≡ ∽੧

Mathematical statistics

A 100(1 – α)% confidence interval for the mean μ of a normal population when the value of σ is known is given by

$$\left(\bar{x} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right)$$
(8.5)

or, equivalently, by $\overline{x} \pm z_{\alpha/2} \cdot \sigma / \sqrt{n}$.

♬ ▶ ◀ ᆿ ▶

Let $X_1, X_2, ..., X_n$ is a sample from a normal distribution with $\sigma = 25$, what sample size n is necessary to ensure that the resulting 95% CI has a width of (at most) 10?

Choices of sample size

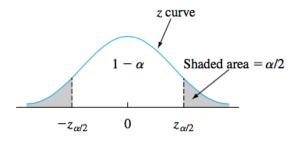
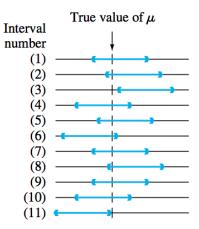


Figure 8.4 $P(-z_{\alpha/2} \le Z \le z_{\alpha/2}) = 1 - \alpha$

$$n = \left(z_{\alpha/2}\frac{\sigma}{\text{width}}\right)^2$$

▲ □ ▶ ▲ □ ▶ ▲

Interpreting confidence interval



95% confidence interval: If we repeat the experiment many times, the interval contains μ about 95% of the time

How NOT to interpret confidence interval

Writing

$$P[\mu \in (ar{X} - 1.7, ar{X} + 1.7)] = 95\%$$

is okay.

• If $\bar{x} = 2.7$, writing

$$P[\mu \in (1, 5.4)] = 95\%$$

is NOT okay.

- Saying $\mu \in (1, 5.4)$ with confidence level 95% is okay.
- Saying "if we repeat the experiment many times, the interval contains μ about 95% of the time" is perfect.