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Countdown to mid-term exam: 7 days

Week 1 · · · · · ·• Chapter 1: Probability review

Week 2 · · · · · ·• Chapter 6: Statistics

Week 4 · · · · · ·• Chapter 7: Point Estimation

Week 7 · · · · · ·• Chapter 8: Confidence Intervals

Week 10 · · · · · ·• Chapter 9: Test of Hypothesis

Week 14 · · · · · ·• Regression
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Chapter 6: Summary
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Chapter 6

6.1 Statistics and their distributions

6.2 The distribution of the sample mean

6.3 The distribution of a linear combination
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Random sample

Definition

The random variables X1,X2, ...,Xn are said to form a (simple)
random sample of size n if

1 the Xi ’s are independent random variables

2 every Xi has the same probability distribution
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Section 6.1: Sampling distributions

1 If the distribution and the statistic T is simple, try to
construct the pmf of the statistic

2 If the probability density function fX (x) of X ’s is known, the

try to represent/compute the cumulative distribution (cdf) of
T

P[T ≤ t]

take the derivative of the function (with respect to t )
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Section 6.3: Linear combination of normal random
variables

Theorem

Let X1,X2, . . . ,Xn be independent normal random variables (with
possibly different means and/or variances). Then

T = a1X1 + a2X2 + . . .+ anXn

also follows the normal distribution.
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Section 6.3: Computations with normal random variables
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Section 6.3: Linear combination of random variables

Theorem

Let X1,X2, . . . ,Xn be independent random variables (with possibly
different means and/or variances). Define

T = a1X1 + a2X2 + . . .+ anXn,

then the mean and the standard deviation of T can be computed
by

E (T ) = a1E (X1) + a2E (X2) + . . .+ anE (Xn)

σ2T = a21σ
2
X1

+ a22σ
2
X2

+ . . .+ a2nσ
2
Xn
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Section 6.2: Distribution of the sample mean

Theorem

Let X1,X2, . . . ,Xn be a random sample from a distribution with
mean µ and variance σ2. Then, in the limit when n→∞, the
standardized version of X̄ have the standard normal distribution

lim
n→∞

P
(
X̄ − µ
σ/
√
n
≤ z

)
= P[Z ≤ z ] = Φ(z)

Rule of Thumb:

If n > 30, the Central Limit Theorem can be used for computation.
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Practice problems
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Example 1*

Problem

Consider the distribution P

x 40 45 50

p(x) 0.2 0.3 0.5

Let {X1,X2} be a random sample of size 2 from P, and
T = X1 + X2.

1 Derive the probability mass function of T

2 Compute the expected value and the standard deviation of T

Question: If T = X1 − X2, can you still solve the problem?
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Example 2*

Problem

Let {X1,X2} be a random sample of size 2 from the exponential
distribution with parameter λ

f (x) =

{
λe−λx if x ≥ 0

0 if x < 0

and T = X1 + X2.

1 Compute the cumulative density function (cdf) of T

2 Compute the probability density function (pdf) of T

Question: If T = X1 + 2X2, can you still solve the problem?
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Example 3

Problem

Two airplanes are flying in the same direction in adjacent parallel
corridors. At time t = 0, the first airplane is 10 km ahead of the
second one.
Suppose the speed of the first plane (km/h) is normally distributed
with mean 520 and standard deviation 10 and the second planes
speed, independent of the first, is also normally distributed with
mean and standard deviation 500 and 10, respectively.

What is the probability that after 2h of flying, the second plane
has not caught up to the first plane?
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Example

Problem

The tip percentage at a restaurant has a mean value of 18% and a
standard deviation of 6%.

What is the approximate probability that the sample mean tip
percentage for a random sample of 40 bills is between 16% and
19%?

Mathematical statistics



Example

Problem

The time that it takes a randomly selected rat of a certain
subspecies to find its way through a maze is a normally distributed
random variable with mean µ = 1.5(minutes) and standard
deviation σ = .35 (minutes).
Suppose five rats are selected. Let X1,X2, . . . ,X5 denote their
times in the maze. Assuming the X ′i s to be a random sample from
this normal distribution, what is the probability that the total time
for the five

T = X1 + X2 + X3 + X4 + X5

is between 6 and 8 minutes.
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Example

Problem

Let X1,X2, . . . ,Xn be random sample from a normally distribution
with mean 2.65 and standard deviation 0.85.

If n = 25, compute
P[X̄ ≤ 3]

Find n such that
P[X̄ ≤ 3] ≥ 0.95
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Chapter 7: Summary
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Overview

7.1 Point estimate

unbiased estimator
mean squared error

7.2 Methods of point estimation

method of moments
method of maximum likelihood.
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Point estimate

Definition

A point estimate θ̂ of a parameter θ is a single number that can be
regarded as a sensible value for θ.

population parameter =⇒ sample =⇒ estimate

θ =⇒ X1,X2, . . . ,Xn =⇒ θ̂
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Mean Squared Error

Measuring error of estimation

|θ̂ − θ| or (θ̂ − θ)2

The error of estimation is random

Definition

The mean squared error of an estimator θ̂ is

E [(θ̂ − θ)2]
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Bias-variance decomposition

Theorem

MSE (θ̂) = E [(θ̂ − θ)2] = V (θ̂) +
(
E (θ̂)− θ

)2
Bias-variance decomposition

Mean squared error = variance of estimator + (bias)2
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Unbiased estimators

Definition

A point estimator θ̂ is said to be an unbiased estimator of θ if

E (θ̂) = θ

for every possible value of θ.

Unbiased estimator

⇔ Bias = 0

⇔ Mean squared error = variance of estimator
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Example 1

Problem

Consider a random sample X1, . . . ,Xn from the pdf

f (x) =
1 + θx

2
− 1 ≤ x ≤ 1

Show that θ̂ = 3X̄ is an unbiased estimator of θ.
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Method of moments: ideas

Let X1, . . . ,Xn be a random sample from a distribution with
pmf or pdf

f (x ; θ1, θ2, . . . , θm)

Assume that for k = 1, . . . ,m

X k
1 + X k

2 + . . .+ X k
n

n
= E (X k)

Solve the system of equations for θ1, θ2, . . . , θm
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Method of moments: Example 4

Problem

Suppose that for a parameter 0 ≤ θ ≤ 1, X is the outcome of the
roll of a four-sided tetrahedral die

x 1 2 3 4

p(x) 3θ
4

θ
4

3(1−θ)
4

(1−θ)
4

Suppose the die is rolled 10 times with outcomes

4, 1, 2, 3, 1, 2, 3, 4, 2, 3

Use the method of moments to obtain an estimator of θ.
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Maximum likelihood estimator

Let X1,X2, ...,Xn have joint pmf or pdf

fjoint(x1, x2, . . . , xn; θ)

where θ is unknown.

When x1, . . . , xn are the observed sample values and this
expression is regarded as a function of θ, it is called the
likelihood function.

The maximum likelihood estimates θML are the value for θ
that maximize the likelihood function:

fjoint(x1, x2, . . . , xn; θML) ≥ fjoint(x1, x2, . . . , xn; θ) ∀θ
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How to find the MLE?

Step 1: Write down the likelihood function.

Step 2: Can you find the maximum of this function?

Step 3: Try taking the logarithm of this function.

Step 4: Find the maximum of this new function.

To find the maximum of a function of θ:

compute the derivative of the function with respect to θ

set this expression of the derivative to 0

solve the equation
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Example 3

Let X1, . . . ,X10 be a random sample of size n = 10 from a
distribution with pdf

f (x) =

{
(θ + 1)xθ if 0 ≤ x ≤ 1

0 otherwise

The observed xi ’s are

0.92, 0.79, 0.90, 0.65, 0.86, 0.47, 0.73, 0.97, 0.94, 0.77

Question: Use the method of maximum likelihood to obtain
an estimator of θ.

Mathematical statistics



Fisher-Neyman factorization theorem

Theorem

T is sufficient for if and only if nonnegative functions g and h can
be found such that

f (x1, x2, . . . , xn; θ) = g(t(x1, x2, . . . , xn), θ) · h(x1, x2, . . . , xn)

i.e. the joint density can be factored into a product such that one
factor, h does not depend on θ; and the other factor, which does
depend on θ, depends on x only through t(x).
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Fisher information

Definition

The Fisher information I (θ) in a single observation from a pmf or

pdf f (x ; θ) is the variance of the random variable U = ∂ log f (X ,θ)
∂θ ,

which is

I (θ) = Var

[
∂ log f (X , θ)

∂θ

]
Note: We always have E [U] = 0.
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The Cramer-Rao Inequality

Theorem

Assume a random sample X1,X2, ...,Xn from the distribution with
pmf or pdf f (x , θ) such that the set of possible values does not
depend on θ. If the statistic T = t(X1,X2, ...,Xn) is an unbiased
estimator for the parameter θ, then

V (T ) ≥ 1

n · I (θ)
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Large Sample Properties of the MLE

Theorem

Given a random sample X1,X2, ...,Xnfrom the distribution with
pmf or pdf f (x , θ) such that the set of possible values does not
depend on θ. Then for large n the maximum likelihood estimator θ̂
has approximately a normal distribution with mean θ and variance

1
n·I (θ) .

More precisely, the limiting distribution of
√
n(θ̂ − θ) is normal

with mean 0 and variance 1/I (θ).
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Chapter 8: Confidence intervals

8.1 Basic properties of confidence intervals (CIs)

Interpreting CIs
General principles to derive CI

8.2 Large-sample confidence intervals for a population mean

Using the Central Limit Theorem to derive CIs

8.3 Intervals based on normal distribution

Using Student’s t-distribution
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Overview

Section 8.1

Normal distribution, σ is known

Section 8.2

Normal distribution → Using Central Limit Theorem
→ needs n > 30
σ is known → needs n > 40

Section 8.3

Normal distribution, σ is known
n is small

→ Introducing t-distribution
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Interpreting confidence interval

95% confidence interval: If we repeat the experiment many times,
the interval contains µ about 95% of the time
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Section 8.1

Assumptions:

Normal distribution

σ is known
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Section 8.2

If after observing X1 = x1, X2 = x2,. . . , Xn = xn (n > 40), we
compute the observed sample mean x̄ and sample standard
deviation s. Then (

x̄ − zα/2
s√
n
, x̄ + zα/2

s√
n

)
is a 95% confidence interval of µ
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Confidence intervals
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One-sided CIs

CIs:

100(1− α)% confidence(
x̄ − zα/2

σ√
n
, x̄ + zα/2

σ√
n

)
95% confidence(
x̄ − 1.96

σ√
n
, x̄ + 1.96

σ√
n

)

One-sided CIs:

100(1− α)% confidence(
−∞, x̄ + zα

σ√
n

)
95% confidence(
−∞, x̄ + 1.64

σ√
n

)
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Prediction intervals

We have available a random sample X1,X2, . . . ,Xn from a
normal population distribution

We wish to predict the value of Xn+1, a single future
observation.
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Principles for deriving CIs

If X1,X2, . . . ,Xn is a random sample from the normal distribution
N (µ, σ2), then

For µ
X̄ − µ
S/
√
n
∼ tn−1

For predicting Xn+1

X̄ − Xn+1

S
√

1 + 1/n
∼ tn−1

For σ

(n − 1)
S2

σ2
∼ χ2

n−1

For sample proportion (n large)

p̂ − p√
p(1− p)/n

∼ N (0, 1)
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Principles for deriving CIs

If X1,X2, . . . ,Xn is a random sample from a distribution f (x , θ),
then

Find a random variable Y = h(X1,X2, . . . ,Xn; θ) such that he
probability distribution of Y does not depend on θ or on any
other unknown parameters.

Find constants a, b such that

P [a < h(X1,X2, . . . ,Xn; θ) < b] = 1− α

Manipulate these inequality to isolate θ

P [`(X1,X2, . . . ,Xn) < θ < u(X1,X2, . . . ,Xn)] = 1− α
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α→ t
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