Mathematical statistics

November $8^{\text {th }}, 2018$
Lecture 19: P-values

Overview

9.1 Hypotheses and test procedures

- test procedures
- errors in hypothesis testing
- significance level
9.2 Tests about a population mean
- normal population with known σ
- large-sample tests
- a normal population with unknown σ
9.4 P-values
9.3 Tests concerning a population proportion
9.5 Selecting a test procedure

Hypothesis testing

4ロ〉4甸〉（
三
っのく

Hypothesis testing

In any hypothesis-testing problem, there are two contradictory hypotheses under consideration

- The null hypothesis, denoted by H_{0}, is the claim that is initially assumed to be true
- The alternative hypothesis, denoted by H_{a}, is the assertion that is contradictory to H_{0}.

Implicit rules (of this chapter)

- H_{0} will always be stated as an equality claim.
- If θ denotes the parameter of interest, the null hypothesis will have the form

$$
H_{0}: \theta=\theta_{0}
$$

- θ_{0} is a specified number called the null value
- The alternative hypothesis will be either:
- $H_{a}: \theta>\theta_{0}$
- $H_{a}: \theta<\theta_{0}$
- $H_{a}: \theta \neq \theta_{0}$

A test procedure is specified by the following:

- A test statistic T : a function of the sample data on which the decision (reject H_{0} or do not reject H_{0}) is to be based
- A rejection region \mathcal{R} : the set of all test statistic values for which H_{0} will be rejected

The null hypothesis will then be rejected if and only if the observed or computed test statistic value falls in the rejection region, i.e., $T \in \mathcal{R}$

- A type I error consists of rejecting the null hypothesis H_{0} when it is true
- A type II error involves not rejecting H_{0} when H_{0} is false.

The approach adhered to by most statistical practitioners is

- specify the largest value of α that can be tolerated
- find a rejection region having that value of α rather than anything smaller
- α : the significance level of the test
- the corresponding test procedure is called a level α test

Hypothesis testing for one parameter

(1) Identify the parameter of interest
(2) Determine the null value and state the null hypothesis
(3) State the appropriate alternative hypothesis
(9) Give the formula for the test statistic
(5) State the rejection region for the selected significance level α
(0) Compute statistic value from data
((Decide whether H_{0} should be rejected and state this conclusion in the problem context

Tests about a population mean

- Null hypothesis

$$
H_{0}: \mu=\mu_{0}
$$

- The alternative hypothesis will be either:
- $H_{a}: \mu>\mu_{0}$
- $H_{a}: \mu<\mu_{0}$
- $H_{a}: \mu \neq \mu_{0}$
- Three settings
- normal population with known σ
- large-sample tests
- a normal population with unknown σ

Normal population with known σ

Null hypothesis: $\mu=\mu_{0}$
Test statistic:

$$
Z=\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}
$$

Alternative Hypothesis

$H_{\mathrm{a}}: \mu>\mu_{0}$
$H_{\mathrm{a}}: \mu<\mu_{0}$
$H_{\mathrm{a}}: \mu \neq \mu_{0}$

Rejection Region for Level α Test
$z \geq z_{\alpha}$ (upper-tailed test)
$z \leq-z_{\alpha}$ (lower-tailed test)
either $z \geq z_{\alpha / 2}$ or $z \leq-z_{\alpha / 2}$ (two-tailed test)

General rule

z curve (probability distribution of test statistic Z when H_{0} is true)

Example

Problem

A manufacturer of sprinkler systems used for fire protection in office buildings claims that the true average system-activation temperature is $130^{\circ} F$. A sample of $n=9$ systems, when tested, yields a sample average activation temperature of $131.08^{\circ} \mathrm{F}$.

If the distribution of activation times is normal with standard deviation $1.5^{\circ} \mathrm{F}$, does the data contradict the manufacturers claim at significance level $\alpha=0.01$?

- Parameter of interest: $\mu=$ true average activation temperature
- Hypotheses

$$
\begin{aligned}
& H_{0}: \mu=130 \\
& H_{a}: \mu \neq 130
\end{aligned}
$$

- Test statistic:

$$
z=\frac{\bar{x}-130}{1.5 / \sqrt{n}}
$$

- Rejection region: either $z \leq-z_{0.005}$ or $z \geq z_{0.005}=2.58$
- Substituting $\bar{x}=131.08, n=25 \rightarrow z=2.16$.
- Note that $-2.58<2.16<2.58$. We fail to reject H_{0} at significance level 0.01 .
- The data does not give strong support to the claim that the true average differs from the design value.

Large-sample tests

Null hypothesis: $\mu=\mu_{0}$
Test statistic:

$$
Z=\frac{\bar{X}-\mu_{0}}{S / \sqrt{n}}
$$

Alternative Hypothesis

$H_{\mathrm{a}}: \mu>\mu_{0}$
$H_{\mathrm{a}}: \mu<\mu_{0}$
$H_{\mathrm{a}}: \mu \neq \mu_{0}$

Rejection Region for Level α Test
$z \geq z_{\alpha}$ (upper-tailed test)
$z \leq-z_{\alpha}$ (lower-tailed test)
either $z \geq z_{\alpha / 2}$ or $z \leq-z_{\alpha / 2}$ (two-tailed test)
[Does not need the normal assumption]

Null hypothesis: $H_{0}: \mu=\mu_{0}$
Test statistic value: $t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}$
Alternative Hypothesis

Rejection Region for a Level α Test

$H_{\mathrm{a}}: \mu>\mu_{0}$
$H_{\mathrm{a}}: \mu<\mu_{0}$
$H_{\mathrm{a}}: \mu \neq \mu_{0}$

$$
\begin{aligned}
& t \geq t_{\alpha, n-1} \text { (upper-tailed) } \\
& t \leq-t_{\alpha, n-1} \text { (lower-tailed) }
\end{aligned}
$$

$$
\text { either } t \geq t_{\alpha / 2, n-1} \text { or } t \leq-t_{\alpha / 2, n-1} \text { (two-tailed) }
$$

[Require normal assumption]

Example

Problem

The amount of shaft wear (. 0001 in .) after a fixed mileage was determined for each of $n=8$ internal combustion engines having copper lead as a bearing material, resulting in $\bar{x}=3.72$ and $s=1.25$.
Assuming that the distribution of shaft wear is normal with mean μ, use the t-test at level 0.05 to test $H_{0}: \mu=3.5$ versus $H_{a}: \mu>3.5$.

Table A. 5 Critical Values for t Distributions

α

ν	. 10	. 05	. 025	. 01	. 005	. 001	. 0005
1	3.078	6.314	12.706	31.821	63.657	318.31	636.62
2	1.886	2.920	4.303	6.965	9.925	22.326	31.598
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	1.319	1.714	2.069	2.500	2.807	3.485	3.767
24	1.318	1.711	2.064	2.492	2.797	3.467	3.745

Mathematical statistics

Practice

Problem

The standard thickness for silicon wafers used in a certain type of integrated circuit is $245 \mu \mathrm{~m}$. A sample of 50 wafers is obtained and the thickness of each one is determined, resulting in a sample mean thickness of $246.18 \mu \mathrm{~m}$ and a sample standard deviation of $3.60 \mu \mathrm{~m}$.
Does this data suggest that true average wafer thickness is larger than the target value? Carry out a test of significance at level . 05 .

P-values

Remarks

- The common approach in statistical testing is:
(1) specifying significance level α
(2) reject/not reject H_{0} based on evidence
- Weaknesses of this approach:
- it says nothing about whether the computed value of the test statistic just barely fell into the rejection region or whether it exceeded the critical value by a large amount
- each individual may select their own significance level for their presentation
- We also want to include some objective quantity that describes how strong the rejection is $\rightarrow \mathrm{P}$-value

Practice problem

Problem

Suppose μ was the true average nicotine content of brand of cigarettes. We want to test:

$$
\begin{aligned}
& H_{0}: \mu=1.5 \\
& H_{a}: \mu>1.5
\end{aligned}
$$

Suppose that $n=64$ and $z=\frac{\bar{x}-1.5}{s / \sqrt{n}}=2.1$. Will we reject H_{0} if the significance level is
(a) $\alpha=0.05$
(b) $\alpha=0.025$
(c) $\alpha=0.01$
(d) $\alpha=0.005$

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9278	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
						$M 97$				

Mathematical statistics

P-value

Level of Significance $\boldsymbol{\alpha}$	Rejection Region	Conclusion
.05	$z \geq 1.645$	Reject H_{0}
.025	$z \geq 1.96$	Reject H_{0}
.01	$z \geq 2.33$	Do not reect H_{0}
.005	$z \geq 2.58$	Do not reject H_{0}

Question: What is the smallest value of α for which H_{0} is rejected.

P-value

DEFINITION The \boldsymbol{P}-value (or observed significance level) is the smallest level of significance at which H_{0} would be rejected when a specified test procedure is used on a given data set. Once the P-value has been determined, the conclusion at any particular level α results from comparing the P-value to α :

1. P-value $\leq \alpha \Rightarrow$ reject H_{0} at level α.
2. P-value $>\alpha \Rightarrow$ do not reject H_{0} at level α.

DECISION
RULE BASED
ON THE
P-VALUE

Select a significance level α (as before, the desired type I error probability).
Then reject H_{0} if P-value $\leq \alpha$; do not reject H_{0} if P-value $>\alpha$

Remark: the smaller the P -value, the more evidence there is in the sample data against the null hypothesis and for the alternative hypothesis.

P-values for z-tests

Figure 9.7 Determination of the P-value for a z test

Practice problem

Problem

The target thickness for silicon wafers used in a certain type of integrated circuit is $245 \mu \mathrm{~m}$. A sample of 50 wafers is obtained and the thickness of each one is determined, resulting in a sample mean thickness of $246.18 \mu \mathrm{~m}$ and a sample standard deviation of $3.60 \mu \mathrm{~m}$.
Does this data suggest that true average wafer thickness is something other than the target value?

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9278	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997
						$M 97$				

Mathematical statistics

P-values for z-tests

1. Parameter of interest: $\mu=$ true average wafer thickness
2. Null hypothesis: $\quad H_{0}: \quad \mu=245$
3. Alternative hypothesis: $\quad H_{\mathrm{a}}: \quad \mu \neq 245$
4. Formula for test statistic value: $z=\frac{\bar{x}-245}{s / \sqrt{n}}$
5. Calculation of test statistic value: $\quad z=\frac{246.18-245}{3.60 / \sqrt{50}}=2.32$
6. Determination of P-value: Because the test is two-tailed,

$$
P \text {-value }=2[1-\Phi(2.32)]=.0204
$$

7. Conclusion: Using a significance level of $.01, H_{0}$ would not be rejected since $.0204>.01$. At this significance level, there is insufficient evidence to conclude that true average thickness differs from the target value.

P-values for z-tests

$$
P \text {-value: } \quad P= \begin{cases}1-\Phi(z) & \text { for an upper-tailed test } \\ \Phi(z) & \text { for a lower-tailed test } \\ 2[1-\Phi(|z|)] & \text { for a two-tailed test }\end{cases}
$$

P-values for t-tests

Figure $9.8 P$-values for t tests

Practice problem

Problem

Suppose we want to test

$$
\begin{aligned}
& H_{0}: \mu=25 \\
& H_{a}: \mu>25
\end{aligned}
$$

from a sample with $n=5$ and the calculated value

$$
t=\frac{\bar{x}-25}{s / \sqrt{n}}=1.02
$$

(a) What is the P-value of the test
(b) Should we reject the null hypothesis?

Table A. 7 t Curve Tail Areas

		2		4		6	7	8	9	10	11	12	13	14	15	16	17	18
0.0	. 500	. 500	. 500	50	50	. 50	. 50	. 50	. 50	. 50	. 50	. 500	. 500	. 50	. 50	. 500	. 500	50
0.1	. 468	. 465	. 463	. 463	. 462.	. 462	. 462	. 461	. 461	. 461	. 461	. 461	. 461	. 461	. 461	. 461	. 461	. 461
0.2	. 437	. 430	. 427	. 426	. 425	. 424	. 424	. 423	. 423	. 423	. 423	. 422	. 422	. 422	. 422	. 42	. 422	422
0.3	. 40	. 396	. 392	. 390	. 388	. 387	. 386	. 386	. 386	. 385	. 385	. 385	. 38	. 384	. 384	. 38	. 384	. 384
0.4	. 379	. 364	. 358	. 355	. 353	. 352	. 351	. 350	. 349	. 349	. 348	. 348	. 348	. 347	. 347	. 347	. 347	. 347
0.5	. 352	. 333	. 326	. 322	. 319	. 317	. 316	. 315	. 315	. 314	. 313	. 313	. 313	. 312	. 31	. 31	. 31	. 312
	. 328	. 305	. 295	. 290	. 287	. 285	. 284	. 283	. 282	. 281	. 280	. 280	. 279	. 279	279	. 27	278	278
0.7	. 306	. 278	. 267	. 261	. 258	. 255	. 253	. 252	. 251	. 250	. 249	. 249	. 248	. 247	. 247	. 24	. 247	. 2
0.8	. 285	. 254	. 241	. 234	. 230	. 227	. 225	. 223	. 222	. 221	. 220	. 220	. 219	. 218	. 218	. 218	. 217	217
0.9	. 267	. 232	. 217	. 210	. 205	. 201	. 199	. 197	. 196	. 195	. 194	. 193	. 192	. 191	. 191	.191	. 190	. 190
1.0	. 250	. 211	. 196	. 187	. 182	. 178	. 175	. 173	. 172	. 170	. 169	. 169	. 168	. 167	. 167	. 166	. 166	. 165
	. 235	. 193	. 176	. 167	. 162	. 157	. 154	. 152	. 150	. 149	. 147	. 146	. 146	. 144	. 144	. 14	. 143	. 143
	. 221	. 177	. 158	. 148	. 142	. 138	. 135	. 132	. 130	. 129	. 128	. 127	. 126	. 124	. 124	. 12	. 123	123
1.3	. 209	. 162	. 142	. 132	. 125	. 121	. 117	. 115	. 113	. 111	. 110	. 109	. 108	. 107	. 107	. 106	. 105	. 105
1.4	. 197	. 148	. 128	. 117	. 110	. 106	. 102	. 100	. 098	. 096	. 095	. 093	. 092	. 091	. 091	. 090	. 090	. 089
1.5	18	. 136	. 115	. 10	. 09	. 09	. 089	. 086	. 084	. 082	. 081	. 080	. 079	. 077	. 077	. 077	. 076	075

Interpreting P-values

A P-value:

- is not the probability that H_{0} is true
- is not the probability of rejecting H_{0}
- is the probability, calculated assuming that H_{0} is true, of obtaining a test statistic value at least as contradictory to the null hypothesis as the value that actually resulted

THAT SETLES THAT.
I HEAR IT'S ONLY A CERTAIN COLOR that causes it.

Significance

Mathematical statistics

