Mathematical statistics

November 8th, 2018

Lecture 19: P-values

Mathematical statistics

э

Overview

- 9.1 Hypotheses and test procedures
 - test procedures
 - errors in hypothesis testing
 - significance level
- 9.2 Tests about a population mean
 - $\bullet\,$ normal population with known $\sigma\,$
 - large-sample tests
 - $\bullet\,$ a normal population with unknown $\sigma\,$
- 9.4 P-values
- 9.3 Tests concerning a population proportion
- 9.5 Selecting a test procedure

Hypothesis testing

Mathematical statistics

æ

・聞き ・ ほき・ ・ ほき

In any hypothesis-testing problem, there are two contradictory hypotheses under consideration

- The null hypothesis, denoted by *H*₀, is the claim that is initially assumed to be true
- The alternative hypothesis, denoted by H_a , is the assertion that is contradictory to H_0 .

- H_0 will always be stated as an equality claim.
- If θ denotes the parameter of interest, the null hypothesis will have the form

$$H_0: \theta = \theta_0$$

- θ_0 is a specified number called the *null value*
- The alternative hypothesis will be either:

•
$$H_a: \theta > \theta_0$$

- $H_a: \theta < \theta_0$
- $H_a: \theta \neq \theta_0$

A test procedure is specified by the following:

- A test statistic *T*: a function of the sample data on which the decision (reject *H*₀ or do not reject *H*₀) is to be based
- A rejection region \mathcal{R} : the set of all test statistic values for which H_0 will be rejected

The null hypothesis will then be rejected if and only if the observed or computed test statistic value falls in the rejection region, i.e., $T \in \mathcal{R}$

- A type I error consists of rejecting the null hypothesis H_0 when it is true
- A type II error involves not rejecting H_0 when H_0 is false.

The approach adhered to by most statistical practitioners is

- \bullet specify the largest value of α that can be tolerated
- \bullet find a rejection region having that value of α rather than anything smaller
- α : the significance level of the test
- \bullet the corresponding test procedure is called a $\mathit{level} \; \alpha \; \mathit{test}$

- Identify the parameter of interest
- Oetermine the null value and state the null hypothesis
- **③** State the appropriate alternative hypothesis
- Give the formula for the test statistic
- § State the rejection region for the selected significance level α
- Ompute statistic value from data
- Decide whether H_0 should be rejected and state this conclusion in the problem context

Tests about a population mean

Mathematical statistics

A∄ ▶ ∢ ∃=

э

Null hypothesis

$$H_0: \mu = \mu_0$$

- The alternative hypothesis will be either:
 - $H_a: \mu > \mu_0$
 - $H_a: \mu < \mu_0$
 - $H_a: \mu \neq \mu_0$
- Three settings
 - $\bullet\,$ normal population with known $\sigma\,$
 - large-sample tests
 - $\bullet\,$ a normal population with unknown $\sigma\,$

Normal population with known σ

Null hypothesis: $\mu = \mu_0$ Test statistic:

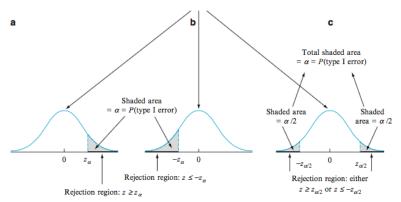
$$Z = \frac{X - \mu_0}{\sigma / \sqrt{n}}$$

. .

Alternative Hypothesis

Rejection Region for Level a Test

 $H_{a}: \mu > \mu_{0}$ $H_{a}: \mu < \mu_{0}$ $H_{a}: \mu \neq \mu_{0}$ $z \ge z_{\alpha}$ (upper-tailed test) $z \le -z_{\alpha}$ (lower-tailed test) either $z \ge z_{\alpha/2}$ or $z \le -z_{\alpha/2}$ (two-tailed test)



z curve (probability distribution of test statistic Z when H_0 is true)

Mathematical statistics

æ

Problem

A manufacturer of sprinkler systems used for fire protection in office buildings claims that the true average system-activation temperature is 130° F. A sample of n = 9 systems, when tested, yields a sample average activation temperature of 131.08° F.

If the distribution of activation times is normal with standard deviation $1.5^{\circ}F$, does the data contradict the manufacturers claim at significance level $\alpha = 0.01$?

Solution

- Parameter of interest: $\mu = true$ average activation temperature
- Hypotheses

$$H_0: \mu = 130$$

 $H_a: \mu \neq 130$

Test statistic:

$$z = \frac{\bar{x} - 130}{1.5/\sqrt{n}}$$

- Rejection region: either $z \leq -z_{0.005}$ or $z \geq z_{0.005} = 2.58$
- Substituting $\bar{x} = 131.08$, $n = 25 \rightarrow z = 2.16$.
- Note that -2.58 < 2.16 < 2.58. We fail to reject H_0 at significance level 0.01.
- The data does not give strong support to the claim that the true average differs from the design value.

Null hypothesis: $\mu = \mu_0$ Test statistic:

$$Z = \frac{\bar{X} - \mu_0}{S/\sqrt{n}}$$

. .

Alternative Hypothesis

Rejection Region for Level a Test

 $H_{a}: \mu > \mu_{0}$ $H_{a}: \mu < \mu_{0}$ $H_{a}: \mu \neq \mu_{0}$

 $z \ge z_{\alpha}$ (upper-tailed test) $z \le -z_{\alpha}$ (lower-tailed test) either $z \ge z_{\alpha/2}$ or $z \le -z_{\alpha/2}$ (two-tailed test)

[Does not need the normal assumption]

Null hypothesis: H_0 : $\mu = \mu_0$ Test statistic value: $t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}$

Alternative Hypothesis

Rejection Region for a Level α Test

 $\begin{array}{ll} H_{a} \colon \mu > \mu_{0} & t \geq t_{\alpha,n-1} \text{ (upper-tailed)} \\ H_{a} \colon \mu < \mu_{0} & t \leq -t_{\alpha,n-1} \text{ (lower-tailed)} \\ H_{a} \colon \mu \neq \mu_{0} & \text{either } t \geq t_{\alpha/2,n-1} \text{ or } t \leq -t_{\alpha/2,n-1} \text{ (two-tailed)} \end{array}$

[Require normal assumption]

Problem

The amount of shaft wear (.0001 in.) after a fixed mileage was determined for each of n = 8 internal combustion engines having copper lead as a bearing material, resulting in $\bar{x} = 3.72$ and s = 1.25. Assuming that the distribution of shaft wear is normal with mean μ , use the t-test at level 0.05 to test $H_0 : \mu = 3.5$ versus $H_a : \mu > 3.5$.

t-table

Table A.5 Critical Values for t Distributions

				α			
ν	.10	.05	.025	.01	.005	.001	.0005
1	3.078	6.314	12.706	31.821	63.657	318.31	636.62
2	1.886	2.920	4.303	6.965	9.925	22.326	31.598
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	1.319	1.714	2.069	2.500	2.807	3.485	3.767
24	1.318	1.711	2.064	2.492	2.797	3.467	3.745
						S LE R S LE	r = r + r

Mathematical statistics

æ

Problem

The standard thickness for silicon wafers used in a certain type of integrated circuit is 245 μ m. A sample of 50 wafers is obtained and the thickness of each one is determined, resulting in a sample mean thickness of 246.18 μ m and a sample standard deviation of 3.60 μ m.

Does this data suggest that true average wafer thickness is larger than the target value? Carry out a test of significance at level .05.

Mathematical statistics

・ロン ・部 と ・ ヨン ・ ヨン …

æ

Remarks

- The common approach in statistical testing is:
 - **1** specifying significance level α
 - 2 reject/not reject H_0 based on evidence
- Weaknesses of this approach:
 - it says nothing about whether the computed value of the test statistic just barely fell into the rejection region or whether it exceeded the critical value by a large amount
 - each individual may select their own significance level for their presentation
- We also want to include some *objective* quantity that describes how *strong* the rejection is → P-value

Problem

Suppose μ was the true average nicotine content of brand of cigarettes. We want to test:

 $H_0: \mu = 1.5$ $H_a: \mu > 1.5$

Suppose that n = 64 and $z = \frac{\bar{x} - 1.5}{s/\sqrt{n}} = 2.1$. Will we reject H_0 if the significance level is

(a) $\alpha = 0.05$ (b) $\alpha = 0.025$ (c) $\alpha = 0.01$ (d) $\alpha = 0.005$

					· · · · ·				x-7 x -7		
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09	
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359	
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753	
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141	
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517	
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879	
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224	
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549	
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852	
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133	
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389	
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621	
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830	
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015	
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177	
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9278	.9292	.9306	.9319	
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441	
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545	
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633	
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706	
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767	
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817	
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857	
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890	
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916	
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936	
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952	
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964	
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974	
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981	
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986	
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990	
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993	
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995	
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997	

≡▶ ≡ ∽੧

Mathematical statistics

Level of Significance α	Rejection Region	Conclusion
.05	$z \ge 1.645$	Reject H ₀
.025	$z \ge 1.96$	Reject H ₀
.01	$z \ge 2.33$	Do not reject H_0
.005	$z \ge 2.58$	Do not reject H_0

Question: What is the smallest value of α for which H_0 is rejected.

御 と く き と く き と

э

DEFINITION The *P*-value (or observed significance level) is the smallest level of significance at which H_0 would be rejected when a specified test procedure is used on a given data set. Once the *P*-value has been determined, the conclusion at any particular level α results from comparing the *P*-value to α :

- 1. *P*-value $\leq \alpha \Rightarrow$ reject H_0 at level α .
- **2.** *P*-value $> \alpha \Rightarrow$ do not reject H_0 at level α .

DECISION	
RULE BASED	Select a significance level α (as before, the desired type I error probability).
ON THE	Then reject H_0 if <i>P</i> -value $\leq \alpha$; do not reject H_0 if <i>P</i> -value $> \alpha$
P-VALUE	

Remark: the smaller the P-value, the more evidence there is in the sample data against the null hypothesis and for the alternative hypothesis.

P-values for z-tests

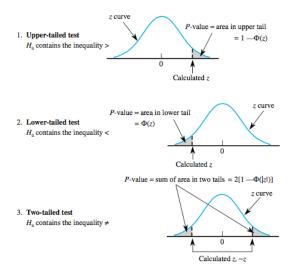


Figure 9.7 Determination of the P-value for a z test

Mathematical statistics

<ロ> <同> <同> < 同> < 同>

э

Problem

The target thickness for silicon wafers used in a certain type of integrated circuit is 245 μ m. A sample of 50 wafers is obtained and the thickness of each one is determined, resulting in a sample mean thickness of 246.18 μ m and a sample standard deviation of 3.60 μ m.

Does this data suggest that true average wafer thickness is something other than the target value?

					· · · · ·				x-7 x -7		
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09	
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359	
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753	
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141	
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517	
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879	
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224	
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549	
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852	
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133	
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389	
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621	
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830	
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015	
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177	
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9278	.9292	.9306	.9319	
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441	
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545	
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633	
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706	
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767	
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817	
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857	
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890	
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916	
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936	
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952	
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964	
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974	
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981	
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986	
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990	
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993	
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995	
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997	

≡▶ ≡ ∽੧

Mathematical statistics

P-values for z-tests

- 1. Parameter of interest: μ = true average wafer thickness
- **2.** Null hypothesis: H_0 : $\mu = 245$
- 3. Alternative hypothesis: H_a : $\mu \neq 245$

4. Formula for test statistic value:
$$z = \frac{\overline{x} - 245}{s/\sqrt{n}}$$

- 5. Calculation of test statistic value: $z = \frac{246.18 245}{3.60/\sqrt{50}} = 2.32$
- 6. Determination of P-value: Because the test is two-tailed,

$$P$$
-value = 2[1 - $\Phi(2.32)$] = .0204

7. Conclusion: Using a significance level of .01, H_0 would not be rejected since .0204 > .01. At this significance level, there is insufficient evidence to conclude that true average thickness differs from the target value.

同 ト イ ヨ ト イ ヨ ト

P-value:
$$P = \begin{cases} 1 - \Phi(z) & \text{for an upper-tailed test} \\ \Phi(z) & \text{for a lower-tailed test} \\ 2[1 - \Phi(|z|)] & \text{for a two-tailed test} \end{cases}$$

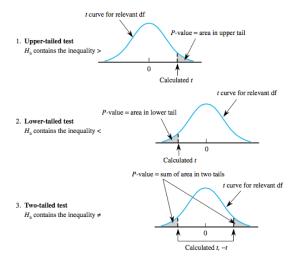
.

æ

=

▶ ▲ 문

P-values for *t*-tests



<ロ> <同> <同> < 同> < 同>

э

Problem

Suppose we want to test

$$H_0: \mu = 25$$

 $H_a: \mu > 25$

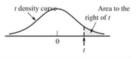
from a sample with n = 5 and the calculated value

$$t = \frac{\bar{x} - 25}{s/\sqrt{n}} = 1.02$$

(a) What is the P-value of the test(b) Should we reject the null hypothesis?

t-table

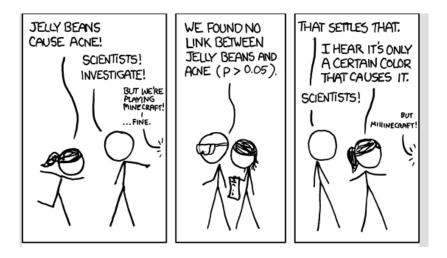
Table A.7 t Curve Tail Areas



1 1	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
0.0	.500	.500	.500	.500	.500	.500	.500	.500	.500	.500	.500	.500	.500	.500	.500	.500	.500	.500
0.1	.468	.465	.463	.463	.462.	.462	.462	.461	.461	.461	.461	.461	.461	.461	.461	.461	.461	.461
0.2	.437	.430	.427	.426	.425	.424	.424	.423	.423	.423	.423	.422	.422	.422	.422	.422	.422	.422
0.3	.407	.396	.392	.390	.388	.387	.386	.386	.386	.385	.385	.385	.384	.384	.384	.384	.384	.384
0.4	.379	.364	.358	.355	.353	.352	.351	.350	.349	.349	.348	.348	.348	.347	.347	.347	.347	.347
0.5	.352	.333	.326	.322	.319	.317	.316	.315	.315	.314	.313	.313	.313	.312	.312	.312	.312	.312
0.6	.328	.305	.295	.290	.287	.285	.284	.283	.282	.281	.280	.280	.279	.279	.279	.278	.278	.278
0.7	.306	.278	.267	.261	.258	.255	.253	.252	.251	.250	.249	.249	.248	.247	.247	.247	.247	.246
0.8	.285	.254	.241	.234	.230	.227	.225	.223	.222	.221	.220	.220	.219	.218	.218	.218	.217	.217
0.9	.267	.232	.217	.210	.205	.201	.199	.197	.196	.195	.194	.193	.192	.191	.191	.191	.190	.190
1.0	.250	.211	.196	.187	.182	.178	.175	.173	.172	.170	.169	.169	.168	.167	.167	.166	.166	.165
1.1	.235	.193	.176	.167	.162	.157	.154	.152	.150	.149	.147	.146	.146	.144	.144	.144	.143	.143
1.2	.221	.177	.158	.148	.142	.138	.135	.132	.130	.129	.128	.127	.126	.124	.124	.124	.123	.123
1.3	.209	.162	.142	.132	.125	.121	.117	.115	.113	.111	.110	.109	.108	.107	.107	.106	.105	.105
1.4	.197	.148	.128	.117	.110	.106	.102	.100	.098	.096	.095	.093	.092	.091	.091	.090	.090	.089
1.5	.187	.136	.115	.104	.097	.092	.089	.086	.084	.082	.081	.080	.079	.077	.077	.077	.076	.075

A P-value:

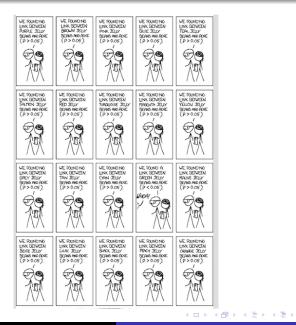
- is not the probability that H_0 is true
- is not the probability of rejecting H_0
- is the probability, calculated assuming that H_0 is true, of obtaining a test statistic value at least as contradictory to the null hypothesis as the value that actually resulted



イロト イポト イヨト イヨト

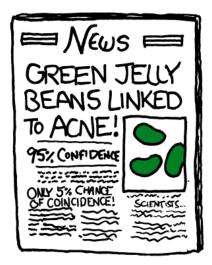
3

Significance



Mathematical statistics

э



▲圖▶ ▲屋▶ ▲屋▶

3