Mathematical statistics

November $13^{\text {th }}, 2018$
Lecture 20: Inferences based on two samples

Overview

Week 1	Probability reviews
W	Chapter 6: Statistics and Sampling Distributions
Week 4	Chapter 7: Point Estimation
Week 7	Chapter 8: Confidence Intervals
Week 10	Chapter 9, 10: Test of Hypothesis
Week 14	Regression

Inferences based on two samples

10.1 Difference between two population means

- z-test
- confidence intervals
10.2 The two-sample t test and confidence interval
10.3 Analysis of paired data

Chapter 9: Hypothesis testing (with one sample)

Hypothesis testing for one parameter

(1) Identify the parameter of interest
(2) Determine the null value and state the null hypothesis
(3) State the appropriate alternative hypothesis
(9) Give the formula for the test statistic
(5) State the rejection region for the selected significance level α
(0) Compute statistic value from data
((Decide whether H_{0} should be rejected and state this conclusion in the problem context

Sample solution

- Parameter of interest: $\mu=$ true average activation temperature
- Hypotheses

$$
\begin{aligned}
& H_{0}: \mu=130 \\
& H_{a}: \mu \neq 130
\end{aligned}
$$

- Test statistic:

$$
z=\frac{\bar{x}-130}{1.5 / \sqrt{n}}
$$

- Rejection region: either $z \leq-z_{0.005}$ or $z \geq z_{0.005}=2.58$
- Substituting $\bar{x}=131.08, n=25 \rightarrow z=2.16$.
- Note that $-2.58<2.16<2.58$. We fail to reject H_{0} at significance level 0.01 .
- The data does not give strong support to the claim that the true average differs from the design value.
- Null hypothesis

$$
H_{0}: \mu=\mu_{0}
$$

- The alternative hypothesis will be either:
- $H_{a}: \mu>\mu_{0}$
- $H_{a}: \mu<\mu_{0}$
- $H_{a}: \mu \neq \mu_{0}$
- Three settings
- normal population with known σ
- large-sample tests
- a normal population with unknown σ

Normal population with known σ

Null hypothesis: $\mu=\mu_{0}$
Test statistic:

$$
Z=\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}
$$

Alternative Hypothesis

$H_{\mathrm{a}}: \mu>\mu_{0}$
$H_{\mathrm{a}}: \mu<\mu_{0}$
$H_{\mathrm{a}}: \mu \neq \mu_{0}$

Rejection Region for Level α Test
$z \geq z_{\alpha}$ (upper-tailed test)
$z \leq-z_{\alpha}$ (lower-tailed test)
either $z \geq z_{\alpha / 2}$ or $z \leq-z_{\alpha / 2}$ (two-tailed test)

Large-sample tests

Null hypothesis: $\mu=\mu_{0}$
Test statistic:

$$
Z=\frac{\bar{X}-\mu_{0}}{S / \sqrt{n}}
$$

Alternative Hypothesis

$H_{\mathrm{a}}: \mu>\mu_{0}$
$H_{\mathrm{a}}: \mu<\mu_{0}$
$H_{\mathrm{a}}: \mu \neq \mu_{0}$

Rejection Region for Level α Test
$z \geq z_{\alpha}$ (upper-tailed test)
$z \leq-z_{\alpha}$ (lower-tailed test)
either $z \geq z_{\alpha / 2}$ or $z \leq-z_{\alpha / 2}$ (two-tailed test)
[Does not need the normal assumption]

Null hypothesis: $H_{0}: \mu=\mu_{0}$
Test statistic value: $t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}$
Alternative Hypothesis

Rejection Region for a Level α Test

$H_{\mathrm{a}}: \mu>\mu_{0}$
$H_{\mathrm{a}}: \mu<\mu_{0}$
$H_{\mathrm{a}}: \mu \neq \mu_{0}$

$$
\begin{aligned}
& t \geq t_{\alpha, n-1} \text { (upper-tailed) } \\
& t \leq-t_{\alpha, n-1} \text { (lower-tailed) }
\end{aligned}
$$

$$
\text { either } t \geq t_{\alpha / 2, n-1} \text { or } t \leq-t_{\alpha / 2, n-1} \text { (two-tailed) }
$$

[Require normal assumption]

P-value

DEFINITION The \boldsymbol{P}-value (or observed significance level) is the smallest level of significance at which H_{0} would be rejected when a specified test procedure is used on a given data set. Once the P-value has been determined, the conclusion at any particular level α results from comparing the P-value to α :

1. P-value $\leq \alpha \Rightarrow$ reject H_{0} at level α.
2. P-value $>\alpha \Rightarrow$ do not reject H_{0} at level α.

DECISION
RULE BASED
ON THE
P-VALUE

Select a significance level α (as before, the desired type I error probability).
Then reject H_{0} if P-value $\leq \alpha$; do not reject H_{0} if P-value $>\alpha$

Remark: the smaller the P -value, the more evidence there is in the sample data against the null hypothesis and for the alternative hypothesis.

Example

Problem

The target thickness for silicon wafers used in a certain type of integrated circuit is $245 \mu \mathrm{~m}$. A sample of 50 wafers is obtained and the thickness of each one is determined, resulting in a sample mean thickness of $246.18 \mu \mathrm{~m}$ and a sample standard deviation of $3.60 \mu \mathrm{~m}$.
Does this data suggest that true average wafer thickness is something other than the target value?

P-values for z-tests

z curve (probability distribution of test statistic Z when H_{0} is true)

P-values for z-tests

1. Parameter of interest: $\mu=$ true average wafer thickness
2. Null hypothesis: $\quad H_{0}: \quad \mu=245$
3. Alternative hypothesis: $\quad H_{\mathrm{a}}: \quad \mu \neq 245$
4. Formula for test statistic value: $z=\frac{\bar{x}-245}{s / \sqrt{n}}$
5. Calculation of test statistic value: $\quad z=\frac{246.18-245}{3.60 / \sqrt{50}}=2.32$
6. Determination of P-value: Because the test is two-tailed,

$$
P \text {-value }=2[1-\Phi(2.32)]=.0204
$$

7. Conclusion: Using a significance level of $.01, H_{0}$ would not be rejected since $.0204>.01$. At this significance level, there is insufficient evidence to conclude that true average thickness differs from the target value.

P-values for t-tests

Figure $9.8 P$-values for t tests

Practice problem

Problem

Suppose we want to test

$$
\begin{aligned}
& H_{0}: \mu=25 \\
& H_{a}: \mu>25
\end{aligned}
$$

from a sample with $n=5$ and the calculated value

$$
t=\frac{\bar{x}-25}{s / \sqrt{n}}=1.02
$$

(a) What is the P-value of the test
(b) Should we reject the null hypothesis?

Table A. 7 t Curve Tail Areas

		2		4		6	7	8	9	10	11	12	13	14	15	16	17	18
0.0	. 500	. 500	. 500	50	50	. 50	. 50	. 50	. 50	. 50	. 50	. 500	. 500	. 50	. 50	. 500	. 500	50
0.1	. 468	. 465	. 463	. 463	. 462.	. 462	. 462	. 461	. 461	. 461	. 461	. 461	. 461	. 461	. 461	. 461	. 461	. 461
0.2	. 437	. 430	. 427	. 426	. 425	. 424	. 424	. 423	. 423	. 423	. 423	. 422	. 422	. 422	. 422	. 42	. 422	422
0.3	. 40	. 396	. 392	. 390	. 388	. 387	. 386	. 386	. 386	. 385	. 385	. 385	. 38	. 384	. 384	. 38	. 384	. 384
0.4	. 379	. 364	. 358	. 355	. 353	. 352	. 351	. 350	. 349	. 349	. 348	. 348	. 348	. 347	. 347	. 347	. 347	. 347
0.5	. 352	. 333	. 326	. 322	. 319	. 317	. 316	. 315	. 315	. 314	. 313	. 313	. 313	. 312	. 31	. 31	. 31	. 312
	. 328	. 305	. 295	. 290	. 287	. 285	. 284	. 283	. 282	. 281	. 280	. 280	. 279	. 279	279	. 27	278	278
0.7	. 306	. 278	. 267	. 261	. 258	. 255	. 253	. 252	. 251	. 250	. 249	. 249	. 248	. 247	. 247	. 24	. 247	. 2
0.8	. 285	. 254	. 241	. 234	. 230	. 227	. 225	. 223	. 222	. 221	. 220	. 220	. 219	. 218	. 218	. 218	. 217	217
0.9	. 267	. 232	. 217	. 210	. 205	. 201	. 199	. 197	. 196	. 195	. 194	. 193	. 192	. 191	. 191	.191	. 190	. 190
1.0	. 250	. 211	. 196	. 187	. 182	. 178	. 175	. 173	. 172	. 170	. 169	. 169	. 168	. 167	. 167	. 166	. 166	. 165
	. 235	. 193	. 176	. 167	. 162	. 157	. 154	. 152	. 150	. 149	. 147	. 146	. 146	. 144	. 144	. 14	. 143	. 143
	. 221	. 177	. 158	. 148	. 142	. 138	. 135	. 132	. 130	. 129	. 128	. 127	. 126	. 124	. 124	. 12	. 123	123
1.3	. 209	. 162	. 142	. 132	. 125	. 121	. 117	. 115	. 113	. 111	. 110	. 109	. 108	. 107	. 107	. 106	. 105	. 105
1.4	. 197	. 148	. 128	. 117	. 110	. 106	. 102	. 100	. 098	. 096	. 095	. 093	. 092	. 091	. 091	. 090	. 090	. 089
1.5	18	. 136	. 115	. 10	. 09	. 09	. 089	. 086	. 084	. 082	. 081	. 080	. 079	. 077	. 077	. 077	. 076	075

Interpreting P-values

A P-value:

- is not the probability that H_{0} is true
- is not the probability of rejecting H_{0}
- is the probability, calculated assuming that H_{0} is true, of obtaining a test statistic value at least as contradictory to the null hypothesis as the value that actually resulted

Two-sample inference

Two-sample inference: example

Example

Let μ_{1} and μ_{2} denote true average decrease in cholesterol for two drugs. From two independent samples $X_{1}, X_{2}, \ldots, X_{m}$ and $Y_{1}, Y_{2}, \ldots, Y_{n}$, we want to test:

$$
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2} \\
& H_{a}: \mu_{1} \neq \mu_{2}
\end{aligned}
$$

Settings

- This lecture: independent samples

Assumption

(1) $X_{1}, X_{2}, \ldots, X_{m}$ is a random sample from a population with mean μ_{1} and variance σ_{1}^{2}.
(2) $Y_{1}, Y_{2}, \ldots, Y_{n}$ is a random sample from a population with mean μ_{2} and variance σ_{2}^{2}.
(3) The X and Y samples are independent of each other.

- Next lecture: paired-sample test

Review Chapter 6 and Chapter 7

Problem

Assume that

- $X_{1}, X_{2}, \ldots, X_{m}$ is a random sample from a population with mean μ_{1} and variance σ_{1}^{2}.
- $Y_{1}, Y_{2}, \ldots, Y_{n}$ is a random sample from a population with mean μ_{2} and variance σ_{2}^{2}.
- The X and Y samples are independent of each other.

Compute (in terms of $\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, m, n$)
(a) $E[\bar{X}-\bar{Y}]$
(b) $\operatorname{Var}[\bar{X}-\bar{Y}]$ and $\sigma_{\bar{X}-\bar{Y}}$

Properties of $\bar{X}-\bar{Y}$

Proposition

The expected value of $X-Y$ is $\mu_{1}-\mu_{2}$, so $X-Y$ is an unbiased estimator of $\mu_{1}-\mu_{2}$. The standard deviation of $\bar{X}-\bar{Y}$ is

$$
\sigma_{\bar{X}-\bar{Y}}=\sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}
$$

Normal distributions with known variances

Chapter 8: Confidence intervals

Assume further that the distributions of X and Y are normal and σ_{1}, σ_{2} are known:

Problem

(a) What is the distribution of

$$
\frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}}
$$

(b) Compute

$$
P\left[-1.96 \leq \frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}} \leq 1.96\right]
$$

(c) Construct a $95 \% \mathrm{Cl}$ for $\mu_{1}-\mu_{2}$ (in terms of $\bar{x}, \bar{y}, m, n, \sigma_{1}$, σ_{2}).

Confidence intervals

When both population distributions are normal, standardizing $\bar{X}-\bar{Y}$ gives a random variable Z with a standard normal distribution. Since the area under the z curve between $-z_{\alpha / 2}$ and $z_{\alpha / 2}$ is $1-\alpha$, it follows that

$$
P\left(-z_{\alpha / 2}<\frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}}<z_{\alpha / 2}\right)=1-\alpha
$$

Manipulation of the inequalities inside the parentheses to isolate $\mu_{1}-\mu_{2}$ yields the equivalent probability statement

$$
P\left(\bar{X}-\bar{Y}-z_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}<\mu_{1}-\mu_{2}<\bar{X}-\bar{Y}+z_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}\right)=1-\alpha
$$

- Setting: independent normal random samples $X_{1}, X_{2}, \ldots, X_{m}$ and $Y_{1}, Y_{2}, \ldots, Y_{n}$ with known values of σ_{1} and σ_{2}. Constant Δ_{0}.
- Null hypothesis:

$$
H_{0}: \mu_{1}-\mu_{2}=\Delta_{0}
$$

- Alternative hypothesis:
(a) $H_{a}: \mu_{1}-\mu_{2}>\Delta_{0}$
(b) $H_{a}: \mu_{1}-\mu_{2}<\Delta_{0}$
(c) $H_{a}: \mu_{1}-\mu_{2} \neq \Delta_{0}$
- When $\Delta=0$, the test (c) becomes

$$
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2} \\
& H_{a}: \mu_{1} \neq \mu_{2}
\end{aligned}
$$

Testing the difference between two population means

Problem

Assume that we want to test the null hypothesis $H_{0}: \mu_{1}-\mu_{2}=\Delta_{0}$ against each of the following alternative hypothesis
(a) $H_{a}: \mu_{1}-\mu_{2}>\Delta_{0}$
(b) $H_{a}: \mu_{1}-\mu_{2}<\Delta_{0}$
(c) $H_{a}: \mu_{1}-\mu_{2} \neq \Delta_{0}$
by using the test statistic:

$$
z=\frac{(\bar{x}-\bar{y})-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}} .
$$

What is the rejection region in each case (a), (b) and (c)?

Testing the difference between two population means

Proposition

Null hypothesis: $H_{0}: \mu_{1}-\mu_{2}=\Delta_{0}$
Test statistic value: $z=\frac{\bar{x}-\bar{y}-\Delta_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}}$

Alternative Hypothesis

$H_{\mathrm{a}}: \mu_{1}-\mu_{2}>\Delta_{0}$
$H_{\mathrm{a}}: \mu_{1}-\mu_{2}<\Delta_{0}$
$H_{\mathrm{a}}: \mu_{1}-\mu_{2} \neq \Delta_{0}$
$z \geq z_{\alpha}$ (upper-tailed test)
Rejection Region for Level α Test
$z \leq-z_{\alpha}$ (lower-tailed test)
either $z \geq z_{\alpha / 2}$ or $z \leq-z_{\alpha / 2}$ (two-tailed test)

Practice problem

Each student in a class of 21 responded to a questionnaire that requested their GPA and the number of hours each week that they studied. For those who studied less than $10 \mathrm{~h} /$ week the GPAs were

$$
2.80,3.40,4.00,3.60,2.00,3.00,3.47,2.80,2.60,2.00
$$

and for those who studied at least $10 \mathrm{~h} /$ week the GPAs were

$$
3.00,3.00,2.20,2.40,4.00,2.96,3.41,3.27,3.80,3.10,2.50
$$

Assume that the distribution of GPA for each group is normal and both distributions have standard deviation $\sigma_{1}=\sigma_{2}=0.6$. Treating the two samples as random, is there evidence that true average GPA differs for the two study times? Carry out a test of significance at level . 05 .

1. The parameter of interest is $\mu_{1}-\mu_{2}$, the difference between true mean GPA for the <10 (conceptual) population and true mean GPA for the ≥ 10 population.
2. The null hypothesis is $H_{0}: \mu_{1}-\mu_{2}=0$.
3. The alternative hypothesis is $H_{\mathrm{a}}: \mu_{1}-\mu_{2} \neq 0$; if H_{a} is true then μ_{1} and μ_{2} are different. Although it would seem unlikely that $\mu_{1}-\mu_{2}>0$ (those with low study hours have higher mean GPA) we will allow it as a possibility and do a two-tailed test.
4. With $\Delta_{0}=0$, the test statistic value is

$$
z=\frac{\bar{x}-\bar{y}}{\sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}}
$$

5. The inequality in H_{a} implies that the test is two-tailed. For $\alpha=.05, \alpha / 2=.025$ and $z_{\alpha / 2}=z_{.025}=1.96$. H_{0} will be rejected if $z \geq 1.96$ or $z \leq-1.96$.

Solution

6. Substituting $m=10, \bar{x}=2.97, \sigma_{1}^{2}=.36, n=11, \bar{y}=3.06$, and $\sigma_{2}^{2}=.36$ into the formula for z yields

$$
z=\frac{2.97-3.06}{\sqrt{\frac{.36}{10}+\frac{.36}{11}}}=\frac{-.09}{.262}=-.34
$$

That is, the value of $\bar{x}-\bar{y}$ is only one-third of a standard deviation below what would be expected when H_{0} is true.
7. Because the value of z is not even close to the rejection region, there is no reason to reject the null hypothesis. This test shows no evidence of any relationship between study hours and GPA.

Large-sample tests/confidence intervals

- Central Limit Theorem: \bar{X} and \bar{Y} are approximately normal when $n>30 \rightarrow$ so is $\bar{X}-\bar{Y}$. Thus

$$
\frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}}
$$

is approximately standard normal

- When n is sufficiently large $S_{1} \approx \sigma_{1}$ and $S_{2} \approx \sigma_{2}$
- Conclusion:

$$
\frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{S_{1}^{2}}{m}+\frac{S_{2}^{2}}{n}}}
$$

is approximately standard normal when n is sufficiently large
If $m, n>40$, we can ignore the normal assumption and replace σ by S

Large-sample tests

Proposition

Use of the test statistic value

$$
z=\frac{\bar{x}-\bar{y}-\Delta_{0}}{\sqrt{\frac{s_{1}^{2}}{m}+\frac{s_{2}^{2}}{n}}}
$$

along with the previously stated upper-, lower-, and two-tailed rejection regions based on z critical values gives large-sample tests whose significance levels are approximately α. These tests are usually appropriate if both $m>40$ and $n>40$. A P-value is computed exactly as it was for our earlier z tests.

Large-sample Cls

Proposition

Provided that m and n are both large, a CI for $\mu_{1}-\mu_{2}$ with a confidence level of approximately $100(1-\alpha) \%$ is

$$
\bar{x}-\bar{y} \pm z_{\alpha / 2} \sqrt{\frac{s_{1}^{2}}{m}+\frac{s_{2}^{2}}{n}}
$$

where - gives the lower limit and + the upper limit of the interval. An upper or lower confidence bound can also be calculated by retaining the appropriate sign and replacing $z_{\alpha / 2}$ by z_{α}.

Example

Example

Let μ_{1} and μ_{2} denote true average tread lives for two competing brands of size P205/65R15 radial tires.
(a) Test

$$
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2} \\
& H_{a}: \mu_{1} \neq \mu_{2}
\end{aligned}
$$

at level 0.05 using the following data: $m=45, \bar{x}=42,500$, $s_{1}=2200, n=45, \bar{y}=40,400$, and $s_{2}=1900$.
(b) Construct a $95 \% \mathrm{Cl}$ for $\mu_{1}-\mu_{2}$.

