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Att.

@ Final exam:

Friday, 12/14/2018, 10:30am —12:30pm
Gore Hall 115

@ Course evaluation

@ Homework due this Thursday
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Overview

Week 1 ------ Probability reviews
Week 2 - - - .. Chap.ter 6 Statistics and Sampling
Distributions
Week 4 ------ Chapter 7: Point Estimation
Week 7 ------ Chapter 8: Confidence Intervals
Week 10 - - -- Chapters 9-10: Tests of Hypothesis
Week 14 - - - .. Chapter 12: Linear regression
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Key steps in statistical inference

Understand the statistical model [Chapter 6]

Come up with reasonable estimates of the parameters of
interest [Chapter 7]

Quantify the confidence with the estimates [Chapter 8]

Testing with the parameters of interest [Chapter 9]

Contexts
@ The central mega-example: population mean p
o Difference between two population means

@ Linear regression
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Difference between two population means

@ Testing:
Ho : 1 = po2
Ha ' pa > po

@ Works well, even if
|1 — p2| << 01,02
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Linear regression
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Regression analysis

@ Objective: determine the relationship between two (or more)
variables so that we can gain information about one of them
through knowing values of the other(s)

@ Many variables in the real world are related, but not in a
deterministic fashion
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Additive models

oY)

& — Graph of f(x)
positive & { /
negative | ,

(x, )

Y = a deterministic function of x + a random deviation
=f(x)+e
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Linear regression

y = Product sales

x = Advertising expenditure

Mathematical model:

Vi = Bo+ Pixi +ei, € ~N(0,0%)
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Linear regression

Assumptions:

@ There are parameters 3y, 51 and o such that for any fixed
value of the independent variable x, the dependent variable Y
is related to x through the model equation

Y = Bo+ Pix + e

The random deviation (random variable) € is assumed to be
normally distributed with mean value 0 and variance o2

@ The observed pairs (x1,y1), (x2,¥2), - - ., (Xn, ¥n) are regarded
as having been generated independently of one another from
the model equation
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Linear regression

X ¥ _— True regression line

[ y= Byt By

Mathematical model:

Yi = Bo+ Bixi +ei, e ~N(0,0%)
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Problem 1

Problem
Recall that

Yi = Bo+ Bixi +ei, € ~N(0,0%)

and
V— Y1+Y2+'..Yn

n

Compute E[Y;], Var[Y;], E[Y] and Var[Y]
(in term of x1,x2,...,Xn, Bo, 1 and 0.)
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Estimating the parameters by maximum likelihood

@ Question 1: Given x;, 89, $1 and o , what is the distribution

of Y;?
1 _ i—(Bo+B1x)1?

fY (yl) = e 202

oV 2

@ The joint density function is

1 >n — L 3 Ivi—(Bo+B1x)]?

Goint(y17y27"'7yn): < € 2
oV 2w

@ The maximum likelihood estimators ﬁAo and Bl minimize

g(Bo, B1) = > _ lyi — (Bo + Buxi)l?
P
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The principle of least squares

The estimators BAO and 31 minimize

n

g(Bo, B1) = _ lyi — (Bo + Brxi)P?

i=1
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The principle of least squares

PRINCIPLE The vertical deviation of the point (x;, y,) from the line y = b, + bx is
OF LEAST height of point — height of line = y; — (b, + bx;)

SQUARES ! 0 i

The sum of squared vertical deviations from the points (x,, y,), . . ., (x,, ¥,) to the
line is then

f(bo, by) = g[)’i = (bo + bix))

The point estimates of B, and 3,, denoted by fiﬂ and f31 and called the least
squares estimates, are those values that minimize f (b, b,). That is, B, and B, are
such that f(By, B1) = fiby, by) for any b and b,. The estimated regression line or
least squares line is then the line whose equationis y = B, + Bx.
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The principle of least squares

@ Taking partial derivatives

Bf(gl;nbﬂ = D2y — by — bix;)(—1) =0
(bs
” al. = 2200 = by~ bix)(—x) = 0

@ Normal equations

nb, + (E-’Ci)bl = Ey:
(Exi)bﬂ + (Ex?)bl = Exi)’f
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Least squares estimates

o Estimates

ey A R e

e Computing formulas

Sy = (Zx,-y,-) — w

n

s () - 7

and
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There were two trees at each of four levels of CO2 concentration,
and the mass of each tree was measured after 11 months. The
observations are obtained with x = atmospheric concentration of
CO2 (mL/L, or ppm) and y = tree mass (kg).

410 510 610 710 810
co2
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Obs x y x* xy ¥y
1 408 1.1 166,464 448.8 1.21
2 408 1.3 166,464 530.4 1.69
3 554 1.6 306,916 886.4 2.56
4 554 2.5 306,916 1385.0 6.25
5 680 3.0 462,400 2040.0 9.00
6 680 4.3 462,400 29240 18.49
7 812 4.2 659,344 34104 17.64
8 812 47 659,344 3816.4 22.09

Sum 4908 227 3,190,248 15,4414 78.93

What are ﬁo, Bl?
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Problem 2: Estimating o by maximum likelihood

The joint density function of (Y1, Ya,..., Yy) is

1 o Ty )12
ﬂomt(yl,yz,...,yn)=< ) o 3 2 i~ (Bo+Bx)]
oV 2T

What is the maximum likelihood estimator of o7
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