Mathematical statistics

November 27 ${ }^{\text {th }}, 2018$
Lecture 22: Linear regression

Att.

- Final exam:

$$
\begin{gathered}
\text { Friday, 12/14/2018, 10:30am -12:30pm } \\
\text { Gore Hall } 115
\end{gathered}
$$

- Course evaluation
- Homework due this Thursday

Overview

Week $1 \ldots \ldots$	Probability reviews
Week $2 \ldots \ldots$	Chapter 6: Statistics and Sampling Distributions
Week $4 \ldots \ldots$	Chapter 7: Point Estimation
Week $7 \ldots \ldots$	Chapter 8: Confidence Intervals
Week $10 \ldots \ldots$	Chapters 9-10: Tests of Hypothesis
Week $14 \ldots \ldots$	Chapter 12: Linear regression

Key steps in statistical inference

- Understand the statistical model [Chapter 6]
- Come up with reasonable estimates of the parameters of interest [Chapter 7]
- Quantify the confidence with the estimates [Chapter 8]
- Testing with the parameters of interest [Chapter 9]

Contexts

- The central mega-example: population mean μ
- Difference between two population means
- Linear regression
- Testing:

$$
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2} \\
& H_{a}: \mu_{1}>\mu_{2}
\end{aligned}
$$

- Works well, even if

$$
\left|\mu_{1}-\mu_{2}\right| \ll \sigma_{1}, \sigma_{2}
$$

Linear regression

Regression analysis

- Objective: determine the relationship between two (or more) variables so that we can gain information about one of them through knowing values of the other(s)
- Many variables in the real world are related, but not in a deterministic fashion

Additive models

$Y=a$ deterministic function of $x+$ a random deviation $=f(x)+\epsilon$

Linear regression

$y=$ Product sales

Mathematical model:

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, \quad \epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Linear regression

Assumptions:

- There are parameters β_{0}, β_{1} and σ such that for any fixed value of the independent variable \times, the dependent variable Y is related to x through the model equation

$$
Y=\beta_{0}+\beta_{1} x+\epsilon
$$

The random deviation (random variable) ϵ is assumed to be normally distributed with mean value 0 and variance σ^{2}

- The observed pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ are regarded as having been generated independently of one another from the model equation

Linear regression

Mathematical model:

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, \quad \epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Problem 1

Problem

Recall that

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, \quad \epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

and

$$
\bar{Y}=\frac{Y_{1}+Y_{2}+\ldots Y_{n}}{n}
$$

Compute $E\left[Y_{i}\right], \operatorname{Var}\left[Y_{i}\right], E[\bar{Y}]$ and $\operatorname{Var}[\bar{Y}]$ (in term of $x_{1}, x_{2}, \ldots, x_{n}, \beta_{0}, \beta_{1}$ and σ.)

Estimating the parameters by maximum likelihood

- Question 1: Given $x_{i}, \beta_{0}, \beta_{1}$ and σ, what is the distribution of Y_{i} ?

$$
f_{Y}\left(y_{i}\right)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{\left[y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right]^{2}}{2 \sigma^{2}}}
$$

- The joint density function is

$$
f_{\text {joint }}\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n} e^{-\frac{1}{2 \sigma^{2}} \sum_{i}\left[y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right]^{2}}
$$

- The maximum likelihood estimators $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ minimize

$$
g\left(\beta_{0}, \beta_{1}\right)=\sum_{i=1}^{n}\left[y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right]^{2}
$$

The principle of least squares

The estimators $\hat{\beta}_{0}$ and $\hat{\beta}_{1}$ minimize

$$
g\left(\beta_{0}, \beta_{1}\right)=\sum_{i=1}^{n}\left[y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right]^{2}
$$

PRINCIPLE OF LEAST
SQUARES

The vertical deviation of the point $\left(x_{i}, y_{i}\right)$ from the line $y=b_{0}+b_{1} x$ is

$$
\text { height of point }- \text { height of line }=y_{i}-\left(b_{0}+b_{1} x_{i}\right)
$$

The sum of squared vertical deviations from the points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ to the line is then

$$
f\left(b_{0}, b_{1}\right)=\sum_{i=1}^{n}\left[y_{i}-\left(b_{0}+b_{1} x_{i}\right)\right]^{2}
$$

The point estimates of $\boldsymbol{\beta}_{0}$ and $\boldsymbol{\beta}_{1}$, denoted by $\hat{\boldsymbol{\beta}}_{0}$ and $\hat{\boldsymbol{\beta}}_{1}$ and called the least squares estimates, are those values that minimize $f\left(b_{0}, b_{1}\right)$. That is, $\hat{\boldsymbol{\beta}}_{0}$ and $\hat{\boldsymbol{\beta}}_{1}$ are such that $f\left(\hat{\boldsymbol{\beta}}_{0}, \hat{\boldsymbol{\beta}}_{1}\right) \leq f\left(b_{0}, b_{1}\right)$ for any b_{0} and b_{1}. The estimated regression line or least squares line is then the line whose equation is $y=\hat{\beta}_{0}+\hat{\beta}_{1} x$.

The principle of least squares

- Taking partial derivatives

$$
\begin{aligned}
& \frac{\partial f\left(b_{0}, b_{1}\right)}{\partial b_{0}}=\sum 2\left(y_{i}-b_{0}-b_{1} x_{i}\right)(-1)=0 \\
& \frac{\partial f\left(b_{0}, b_{1}\right)}{\partial b_{1}}=\sum 2\left(y_{i}-b_{0}-b_{1} x_{i}\right)\left(-x_{i}\right)=0
\end{aligned}
$$

- Normal equations

$$
\begin{aligned}
n b_{0}+\left(\sum x_{i}\right) b_{1} & =\sum y_{i} \\
\left(\sum x_{i}\right) b_{0}+\left(\sum x_{i}^{2}\right) b_{1} & =\sum x_{i} y_{i}
\end{aligned}
$$

Least squares estimates

- Estimates

$$
\hat{\beta}_{1}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{S_{x y}}{S_{x x}}, \quad \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
$$

- Computing formulas

$$
S_{x y}=\left(\sum x_{i} y_{i}\right)-\frac{\left(\sum x_{i}\right)\left(\sum y_{i}\right)}{n}
$$

and

$$
S_{x x}=\left(\sum x_{i}^{2}\right)-\frac{\left(\sum x_{i}\right)^{2}}{n}
$$

Example

There were two trees at each of four levels of CO2 concentration, and the mass of each tree was measured after 11 months. The observations are obtained with $x=$ atmospheric concentration of $\mathrm{CO} 2(\mathrm{~mL} / \mathrm{L}$, or ppm$)$ and $y=$ tree mass (kg).

Example

Obs	\boldsymbol{x}	\boldsymbol{y}	$\boldsymbol{x}^{\mathbf{2}}$	$\boldsymbol{x y}$	$\boldsymbol{y}^{\mathbf{2}}$
1	408	1.1	166,464	448.8	1.21
2	408	1.3	166,464	530.4	1.69
3	554	1.6	306,916	886.4	2.56
4	554	2.5	306,916	1385.0	6.25
5	680	3.0	462,400	2040.0	9.00
6	680	4.3	462,400	2924.0	18.49
7	812	4.2	659,344	3410.4	17.64
8	812	4.7	659,344	3816.4	22.09
Sum	4908	22.7	$3,190,248$	$15,441.4$	78.93

What are $\hat{\beta}_{0}, \hat{\beta}_{1}$?

Problem 2: Estimating σ by maximum likelihood

Problem

The joint density function of $\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)$ is

$$
f_{\text {joint }}\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n} e^{-\frac{1}{2 \sigma^{2}} \sum_{i}\left[y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right]^{2}}
$$

What is the maximum likelihood estimator of σ ?

