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Overview

Week 1 · · · · · ·• Probability reviews

Week 2 · · · · · ·• Chapter 6: Statistics and Sampling
Distributions

Week 4 · · · · · ·• Chapter 7: Point Estimation

Week 7 · · · · · ·• Chapter 8: Confidence Intervals

Week 10 · · · · · ·• Chapters 9–10: Tests of Hypothesis

Week 14 · · · · · ·• Chapter 12: Linear regression
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Key steps in statistical inference

Understand the statistical model [Chapter 6]

Come up with reasonable estimates of the parameters of
interest [Chapter 7]

Quantify the confidence with the estimates [Chapter 8]

Testing with the parameters of interest [Chapter 9]

Contexts

The central mega-example: population mean µ

Difference between two population means

Linear regression
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Linear regression
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Linear regression

Mathematical model:

yi = β0 + β1xi + εi , εi ∼ N (0, σ2)

Mathematical statistics



Linear regression

Assumptions:

There are parameters β0, β1 and σ such that for any fixed
value of the independent variable x, the dependent variable Y
is related to x through the model equation

Y = β0 + β1x + ε.

The random deviation (random variable) ε is assumed to be
normally distributed with mean value 0 and variance σ2

The observed pairs (x1, y1), (x2, y2), . . . , (xn, yn) are regarded
as having been generated independently of one another from
the model equation
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Linear regression

Mathematical model:

Yi = β0 + β1xi + εi , εi ∼ N (0, σ2)
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The principle of least squares
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Least squares estimates

Estimates

β̂1 =

∑
(xi − x̄)(yi − ȳ)∑

(xi − x̄)2
=

Sxy
Sxx

, β̂0 = ȳ − β̂1x̄

Computing formulas

Sxy =
(∑

xiyi

)
− (
∑

xi )(
∑

yi )

n

and

Sxx =
(∑

x2i

)
− (
∑

xi )
2

n
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Problem 2: Estimating σ by maximum likelihood

Problem

The joint density function of (Y1,Y2, . . . ,Yn) is

fjoint(y1, y2, . . . , yn) =

(
1

σ
√

2π

)n

e−
1

2σ2

∑
i [yi−(β0+β1xi )]2

What is the maximum likelihood estimator of σ?
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Confidence intervals for β1

Mathematical statistics



Principles for deriving CIs

If X1,X2, . . . ,Xn is a random sample from a distribution f (x , θ),
then

Find a random variable Y = h(X1,X2, . . . ,Xn; θ) such that
the probability distribution of Y does not depend on θ or on
any other unknown parameters.

Find constants a, b such that

P [a < h(X1,X2, . . . ,Xn; θ) < b] = 0.95

Manipulate these inequalities to isolate θ

P [`(X1,X2, . . . ,Xn) < θ < u(X1,X2, . . . ,Xn)] = 0.95
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Normality of β̂1

First, recall that

β̂1 =

∑
(xi − x̄)(Yi − Ȳ )∑

(xi − x̄)2

On the other hand,∑
(xi − x̄)(Ȳ ) = Ȳ

∑
(xi − x̄) = Ȳ · 0 = 0

Thus

β̂1 =
∑

ciYi where ci =
(xi − x̄)

Sxx
→
is a linear combination of the independent r.v.’s
Y1,Y2, . . . ,Yn, each of which is normally distributed
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Properties of β̂1

To construct confidence intervals for β1, we need to compute
the expected value and the variance of β̂1 in terms of
(x1, y1), . . . (xn, yn) and σ where

Yi = β0 + β1xi + εi , εi ∼ N (0, σ2)

and

β̂1 =

∑
(xi − x̄)(Yi − Ȳ )∑

(xi − x̄)2
=

∑
(xi − x̄)Yi∑
(xi − x̄)2

Task: Compute E [β̂1] and Var [β̂1]
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Setting 1: If σ is known

Problem

Recall that
β̂1 − β1
σ/
√
Sxx

follows the standard normal distribution.
Assuming that σ is known, construct the 100(1− α)% confidence
interval for β1.
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Setting 2: σ is unknown

Theorem

If we define

S2 =

∑
[Yi − (β̂0 + β̂1xi )]2

n − 2

then the random variable

β̂1 − β1
S/
√
Sxx

follows the t−distribution with degrees of freedom (n − 2).
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t distributions

Definition

Let Z be a standard normal rv and let W be a χ2
ν rv independent

of Z . Then the t distribution with degrees of freedom ν is defined
to be the distribution of the ratio

T =
Z√
W /ν
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Setting 2: σ is unknown

Our statistic:

β̂1 − β1
S/
√
Sxx

=

β̂1−β1
σ/
√
Sxx√
S2

σ2

The theorem is a consequence of the following facts

β̂1 and S are independent

The statistic
1

σ2

∑
[Yi − (β̂0 + β̂1xi )]2

follows the χ2-distribution with (n − 2) degrees of freedom.
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Testing with β1
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β1 characterizes relation between x and Y

Question: Does increase advertising expense help increase sales?
→ Testing H0 : β1 = 0 against Ha : β1 > 0
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β1 characterizes relation between x and Y

Question: Do computer scientists spend too much time at arcades?
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Hypothesis testing
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Example 12.12

Is it possible to predict graduation rates from SAT scores?

Assume that

β̂1 = .08855; s = 10.29;Sxx = 704125; n = 20.
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