Mathematical statistics

November 29th, 2018
Lecture 23: Linear regression

Att.

- Final exam:

Friday, 12/14/2018, 10:30am -12:30pm
 Gore Hall 115

- Course evaluation

Overview

Week $1 \ldots \ldots$	Probability reviews
Week $2 \ldots \ldots$	Chapter 6: Statistics and Sampling Distributions
Week $4 \ldots \ldots$	Chapter 7: Point Estimation
Week $7 \ldots \ldots$	Chapter 8: Confidence Intervals
Week $10 \ldots \ldots$	Chapters 9-10: Tests of Hypothesis
Week $14 \ldots \ldots$	Chapter 12: Linear regression

Key steps in statistical inference

- Understand the statistical model [Chapter 6]
- Come up with reasonable estimates of the parameters of interest [Chapter 7]
- Quantify the confidence with the estimates [Chapter 8]
- Testing with the parameters of interest [Chapter 9]

Contexts

- The central mega-example: population mean μ
- Difference between two population means
- Linear regression

Linear regression

Linear regression

$y=$ Product sales

Mathematical model:

$$
y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, \quad \epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

Linear regression

Assumptions:

- There are parameters β_{0}, β_{1} and σ such that for any fixed value of the independent variable \times, the dependent variable Y is related to x through the model equation

$$
Y=\beta_{0}+\beta_{1} x+\epsilon
$$

The random deviation (random variable) ϵ is assumed to be normally distributed with mean value 0 and variance σ^{2}

- The observed pairs $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right), \ldots,\left(x_{n}, y_{n}\right)$ are regarded as having been generated independently of one another from the model equation

Linear regression

Mathematical model:

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, \quad \epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

PRINCIPLE OF LEAST
SQUARES

The vertical deviation of the point $\left(x_{i}, y_{i}\right)$ from the line $y=b_{0}+b_{1} x$ is

$$
\text { height of point }- \text { height of line }=y_{i}-\left(b_{0}+b_{1} x_{i}\right)
$$

The sum of squared vertical deviations from the points $\left(x_{1}, y_{1}\right), \ldots,\left(x_{n}, y_{n}\right)$ to the line is then

$$
f\left(b_{0}, b_{1}\right)=\sum_{i=1}^{n}\left[y_{i}-\left(b_{0}+b_{1} x_{i}\right)\right]^{2}
$$

The point estimates of $\boldsymbol{\beta}_{0}$ and $\boldsymbol{\beta}_{1}$, denoted by $\hat{\boldsymbol{\beta}}_{0}$ and $\hat{\boldsymbol{\beta}}_{1}$ and called the least squares estimates, are those values that minimize $f\left(b_{0}, b_{1}\right)$. That is, $\hat{\boldsymbol{\beta}}_{0}$ and $\hat{\boldsymbol{\beta}}_{1}$ are such that $f\left(\hat{\boldsymbol{\beta}}_{0}, \hat{\boldsymbol{\beta}}_{1}\right) \leq f\left(b_{0}, b_{1}\right)$ for any b_{0} and b_{1}. The estimated regression line or least squares line is then the line whose equation is $y=\hat{\beta}_{0}+\hat{\beta}_{1} x$.

Least squares estimates

- Estimates

$$
\hat{\beta}_{1}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(y_{i}-\bar{y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{S_{x y}}{S_{x x}}, \quad \hat{\beta}_{0}=\bar{y}-\hat{\beta}_{1} \bar{x}
$$

- Computing formulas

$$
S_{x y}=\left(\sum x_{i} y_{i}\right)-\frac{\left(\sum x_{i}\right)\left(\sum y_{i}\right)}{n}
$$

and

$$
S_{x x}=\left(\sum x_{i}^{2}\right)-\frac{\left(\sum x_{i}\right)^{2}}{n}
$$

Problem 2: Estimating σ by maximum likelihood

Problem

The joint density function of $\left(Y_{1}, Y_{2}, \ldots, Y_{n}\right)$ is

$$
f_{\text {joint }}\left(y_{1}, y_{2}, \ldots, y_{n}\right)=\left(\frac{1}{\sigma \sqrt{2 \pi}}\right)^{n} e^{-\frac{1}{2 \sigma^{2}} \sum_{i}\left[y_{i}-\left(\beta_{0}+\beta_{1} x_{i}\right)\right]^{2}}
$$

What is the maximum likelihood estimator of σ ?

Confidence intervals for β_{1}

Principles for deriving Cls

If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a distribution $f(x, \theta)$, then

- Find a random variable $Y=h\left(X_{1}, X_{2}, \ldots, X_{n} ; \theta\right)$ such that the probability distribution of Y does not depend on θ or on any other unknown parameters.
- Find constants a, b such that

$$
P\left[a<h\left(X_{1}, X_{2}, \ldots, X_{n} ; \theta\right)<b\right]=0.95
$$

- Manipulate these inequalities to isolate θ

$$
P\left[\ell\left(X_{1}, X_{2}, \ldots, X_{n}\right)<\theta<u\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right]=0.95
$$

Normality of $\hat{\beta}_{1}$

- First, recall that

$$
\hat{\beta}_{1}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(Y_{i}-\bar{Y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}
$$

- On the other hand,

$$
\sum\left(x_{i}-\bar{x}\right)(\bar{Y})=\bar{Y} \sum\left(x_{i}-\bar{x}\right)=\bar{Y} \cdot 0=0
$$

- Thus

$$
\hat{\beta}_{1}=\sum c_{i} Y_{i} \text { where } c_{i}=\frac{\left(x_{i}-\bar{x}\right)}{S_{x x}}
$$

\rightarrow
is a linear combination of the independent r.v.'s
$Y_{1}, Y_{2}, \ldots, Y_{n}$, each of which is normally distributed

Properties of $\hat{\beta}_{1}$

- To construct confidence intervals for β_{1}, we need to compute the expected value and the variance of $\hat{\beta}_{1}$ in terms of $\left(x_{1}, y_{1}\right), \ldots\left(x_{n}, y_{n}\right)$ and σ where

$$
Y_{i}=\beta_{0}+\beta_{1} x_{i}+\epsilon_{i}, \quad \epsilon_{i} \sim \mathcal{N}\left(0, \sigma^{2}\right)
$$

and

$$
\hat{\beta}_{1}=\frac{\sum\left(x_{i}-\bar{x}\right)\left(Y_{i}-\bar{Y}\right)}{\sum\left(x_{i}-\bar{x}\right)^{2}}=\frac{\sum\left(x_{i}-\bar{x}\right) Y_{i}}{\sum\left(x_{i}-\bar{x}\right)^{2}}
$$

- Task: Compute $E\left[\hat{\beta}_{1}\right]$ and $\operatorname{Var}\left[\hat{\beta}_{1}\right]$

Setting 1: If σ is known

Problem

Recall that

$$
\frac{\hat{\beta}_{1}-\beta_{1}}{\sigma / \sqrt{S_{x x}}}
$$

follows the standard normal distribution.
Assuming that σ is known, construct the $100(1-\alpha) \%$ confidence interval for β_{1}.

Setting 2: σ is unknown

Theorem

If we define

$$
S^{2}=\frac{\sum\left[Y_{i}-\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}\right)\right]^{2}}{n-2}
$$

then the random variable

$$
\frac{\hat{\beta}_{1}-\beta_{1}}{S / \sqrt{S_{x x}}}
$$

follows the t-distribution with degrees of freedom $(n-2)$.

Definition

Let Z be a standard normal $r v$ and let W be a $\chi_{\nu}^{2} r v$ independent of Z. Then the t distribution with degrees of freedom ν is defined to be the distribution of the ratio

$$
T=\frac{Z}{\sqrt{W / \nu}}
$$

Setting 2: σ is unknown

Our statistic:

$$
\frac{\hat{\beta}_{1}-\beta_{1}}{S / \sqrt{S_{x x}}}=\frac{\frac{\hat{\beta}_{1}-\beta_{1}}{\sigma / \sqrt{S_{x x}}}}{\sqrt{\frac{S^{2}}{\sigma^{2}}}}
$$

The theorem is a consequence of the following facts

- $\hat{\beta}_{1}$ and S are independent
- The statistic

$$
\frac{1}{\sigma^{2}} \sum\left[Y_{i}-\left(\hat{\beta}_{0}+\hat{\beta}_{1} x_{i}\right)\right]^{2}
$$

follows the χ^{2}-distribution with $(n-2)$ degrees of freedom.

Testing with β_{1}

$y=$ Product sales

Question: Does increase advertising expense help increase sales? \rightarrow Testing $H_{0}: \beta_{1}=0$ against $H_{a}: \beta_{1}>0$

β_{1} characterizes relation between x and Y

Question: Do computer scientists spend too much time at arcades?

Hypothesis testing

Null hypothesis: $H_{0}: \beta_{1}=\beta_{10}$
Test statistic value: $t=\frac{\hat{\boldsymbol{\beta}}_{1}-\beta_{10}}{s_{\hat{\beta}_{1}}}$

Alternative Hypothesis
 Rejection Region for Level $\boldsymbol{\alpha}$ Test

$H_{\mathrm{a}}: \boldsymbol{\beta}_{1}>\boldsymbol{\beta}_{10}$
$t \geq t_{\alpha, n-2}$
$H_{\mathrm{a}}: \boldsymbol{\beta}_{1}<\boldsymbol{\beta}_{10}$
$H_{\mathrm{a}}: \boldsymbol{\beta}_{1} \neq \boldsymbol{\beta}_{10}$
$t \leq-t_{\alpha, n-2}$
either $t \geq t_{\alpha / 2, n-2}$ or $t \leq-t_{\alpha / 2, n-2}$
A P-value based on $n-2 \mathrm{df}$ can be calculated just as was done previously for t tests in Chapters 9 and 10.

Example 12.12

Is it possible to predict graduation rates from SAT scores?

Assume that

$$
\hat{\beta}_{1}=.08855 ; s=10.29 ; S_{x x}=704125 ; n=20 .
$$

