Mathematical statistics

November 29th, 2018

Lecture 23: Linear regression

Mathematical statistics

• Final exam:

Friday, 12/14/2018, 10:30am –12:30pm Gore Hall 115

• Course evaluation

▶ ∢ ≣

Week 1 · · · · ·	Probability reviews
Week 2 · · · · •	Chapter 6: Statistics and Sampling Distributions
Week 4 · · · · ·	Chapter 7: Point Estimation
Week 7 · · · · ·	Chapter 8: Confidence Intervals
Week 10 · · · · ·	Chapters 9–10: Tests of Hypothesis
Week 14	Chapter 12: Linear regression

Mathematical statistics

・ロン ・四 と ・ ヨ と ・ ヨ と ・

æ

Key steps in statistical inference

- Understand the statistical model [Chapter 6]
- Come up with reasonable estimates of the parameters of interest [Chapter 7]
- Quantify the confidence with the estimates [Chapter 8]
- Testing with the parameters of interest [Chapter 9]

Contexts

- The central mega-example: population mean μ
- Difference between two population means
- Linear regression

Linear regression

Mathematical statistics

æ

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

Linear regression

Mathematical model:

$$y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad \epsilon_i \sim \mathcal{N}(0, \sigma^2)$$

Assumptions:

 There are parameters β₀, β₁ and σ such that for any fixed value of the independent variable x, the dependent variable Y is related to x through the model equation

$$Y = \beta_0 + \beta_1 x + \epsilon.$$

The random deviation (random variable) ϵ is assumed to be normally distributed with mean value 0 and variance σ^2

• The observed pairs $(x_1, y_1), (x_2, y_2), \dots, (x_n, y_n)$ are regarded as having been generated independently of one another from the model equation

Mathematical model:

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad \epsilon_i \sim \mathcal{N}(0, \sigma^2)$$

æ

▲圖 ▶ ▲ 臣 ▶ ▲ 臣 ▶

PRINCIPLE OF LEAST SQUARES The vertical deviation of the point (x_i, y_i) from the line $y = b_0 + b_1 x$ is

height of point – height of line = $y_i - (b_0 + b_1 x_i)$

The sum of squared vertical deviations from the points $(x_1, y_1), \ldots, (x_n, y_n)$ to the line is then

$$f(b_0, b_1) = \sum_{i=1}^n [y_i - (b_0 + b_1 x_i)]^2$$

The point estimates of β_0 and β_1 , denoted by $\hat{\beta}_0$ and $\hat{\beta}_1$ and called the **least** squares estimates, are those values that minimize $f(b_0, b_1)$. That is, $\hat{\beta}_0$ and $\hat{\beta}_1$ are such that $f(\hat{\beta}_0, \hat{\beta}_1) \leq f(b_0, b_1)$ for any b_0 and b_1 . The estimated regression line or **least squares line** is then the line whose equation is $y = \hat{\beta}_0 + \hat{\beta}_1 x$.

・ 戸 ト ・ ヨ ト ・ ヨ ト

Least squares estimates

Estimates

$$\hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(y_i - \bar{y})}{\sum (x_i - \bar{x})^2} = \frac{S_{xy}}{S_{xx}}, \quad \hat{\beta}_0 = \bar{y} - \hat{\beta}_1 \bar{x}$$

• Computing formulas

$$S_{xy} = \left(\sum x_i y_i\right) - \frac{\left(\sum x_i\right)\left(\sum y_i\right)}{n}$$

and

$$S_{xx} = \left(\sum x_i^2\right) - \frac{\left(\sum x_i\right)^2}{n}$$

Problem

The joint density function of (Y_1, Y_2, \ldots, Y_n) is

$$f_{joint}(y_1, y_2, \ldots, y_n) = \left(\frac{1}{\sigma\sqrt{2\pi}}\right)^n e^{-\frac{1}{2\sigma^2}\sum_i [y_i - (\beta_0 + \beta_1 x_i)]^2}$$

What is the maximum likelihood estimator of σ ?

Confidence intervals for β_1

Mathematical statistics

æ

- ● ● ●

If X_1, X_2, \ldots, X_n is a random sample from a distribution $f(x, \theta)$, then

- Find a random variable $Y = h(X_1, X_2, ..., X_n; \theta)$ such that the probability distribution of Y does not depend on θ or on any other unknown parameters.
- Find constants *a*, *b* such that

$$P[a < h(X_1, X_2, \dots, X_n; \theta) < b] = 0.95$$

• Manipulate these inequalities to isolate θ

$$P[\ell(X_1, X_2, \dots, X_n) < \theta < u(X_1, X_2, \dots, X_n)] = 0.95$$

• First, recall that

$$\hat{\beta}_1 = \frac{\sum (x_i - \bar{x})(Y_i - \bar{Y})}{\sum (x_i - \bar{x})^2}$$

• On the other hand,

$$\sum (x_i - \bar{x})(\bar{Y}) = \bar{Y} \sum (x_i - \bar{x}) = \bar{Y} \cdot \mathbf{0} = \mathbf{0}$$

Thus

$$\hat{eta}_1 = \sum c_i Y_i$$
 where $c_i = rac{(x_i - ar{x})}{S_{ ext{xx}}}$

 \rightarrow

is a linear combination of the independent r.v.'s Y_1, Y_2, \ldots, Y_n , each of which is normally distributed

 To construct confidence intervals for β₁, we need to compute the expected value and the variance of β₁ in terms of (x₁, y₁),...(x_n, y_n) and σ where

$$Y_i = \beta_0 + \beta_1 x_i + \epsilon_i, \quad \epsilon_i \sim \mathcal{N}(0, \sigma^2)$$

and

$$\hat{\beta}_{1} = \frac{\sum (x_{i} - \bar{x})(Y_{i} - \bar{Y})}{\sum (x_{i} - \bar{x})^{2}} = \frac{\sum (x_{i} - \bar{x})Y_{i}}{\sum (x_{i} - \bar{x})^{2}}$$

• Task: Compute $E[\hat{\beta}_1]$ and $Var[\hat{\beta}_1]$

Problem

Recall that

follows the standard normal distribution. Assuming that σ is known, construct the $100(1 - \alpha)$ % confidence interval for β_1 .

Theorem

If we define

$$S^{2} = \frac{\sum [Y_{i} - (\hat{\beta}_{0} + \hat{\beta}_{1}x_{i})]^{2}}{n - 2}$$

then the random variable

$$\frac{\hat{\beta}_1 - \beta_1}{S/\sqrt{S_{xx}}}$$

follows the t-distribution with degrees of freedom (n-2).

Definition

Let Z be a standard normal rv and let W be a χ^2_{ν} rv independent of Z. Then the t distribution with degrees of freedom ν is defined to be the distribution of the ratio

$$T = \frac{Z}{\sqrt{W/\nu}}$$

Mathematical statistics

Our statistic:

$$\frac{\hat{\beta}_1 - \beta_1}{S/\sqrt{S_{xx}}} = \frac{\frac{\hat{\beta}_1 - \beta_1}{\sigma/\sqrt{S_{xx}}}}{\sqrt{\frac{S^2}{\sigma^2}}}$$

The theorem is a consequence of the following facts

- $\hat{\beta}_1$ and S are independent
- The statistic

$$\frac{1}{\sigma^2}\sum \left[Y_i - (\hat{\beta}_0 + \hat{\beta}_1 x_i)\right]^2$$

follows the χ^2 -distribution with (n-2) degrees of freedom.

♬▶ ◀ 늘 ▶ ◀

Testing with β_1

Mathematical statistics

æ

・聞き ・ ほき・ ・ ほき

β_1 characterizes relation between x and Y

Question: Does increase advertising expense help increase sales? \rightarrow Testing $H_0: \beta_1 = 0$ against $H_a: \beta_1 > 0$

β_1 characterizes relation between x and Y

Question: Do computer scientists spend too much time at arcades?

Hypothesis testing

Null hypothesis: H_0 : $\beta_1 = \beta_{10}$

Test statistic value: $t = \frac{\hat{\beta}_1 - \frac{\hat{\beta}_2}{s_{\ell}}}{s_{\ell}}$

$$\frac{\beta_1 - \beta_{10}}{s_{\hat{\beta}_1}}$$

Alternative Hypothesis

Rejection Region for Level α **Test**

 $\begin{array}{ll} H_{a}: \ \beta_{1} > \beta_{10} & t \geq t_{\alpha,n-2} \\ H_{a}: \ \beta_{1} < \beta_{10} & t \leq -t_{\alpha,n-2} \\ H_{a}: \ \beta_{1} \neq \beta_{10} & \text{either} \quad t \geq t_{\alpha/2,n-2} & \text{or} \quad t \leq -t_{\alpha/2,n-2} \end{array}$

A *P*-value based on n - 2 df can be calculated just as was done previously for *t* tests in Chapters 9 and 10.

□ > < = > <

Is it possible to predict graduation rates from SAT scores?

Assume that

$$\hat{eta}_1=$$
 .08855; $s=10.29$; $S_{xx}=$ 704125; $n=20$