Quiz 3

Assume that

- $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a normal population with mean μ_{1} and variance σ_{1}^{2}.
- $Y_{1}, Y_{2}, \ldots, Y_{n}$ is a random sample from a normal population with mean μ_{2} and variance σ_{2}^{2}.
- The X and Y samples are independent of each other.
(a) Compute (in terms of $\mu_{1}, \mu_{2}, \sigma_{1}, \sigma_{2}, n$)
- $E[\bar{X}-\bar{Y}]$
- $\operatorname{Var}[\bar{X}-\bar{Y}]$ and $\sigma_{\bar{X}-\bar{Y}}$
(b) Assuming that $n=25, \sigma_{1}=\sigma_{2}=5, \bar{x}=20$ and $\bar{y}=10$, construct the 95% confidence interval for $\mu_{1}-\mu_{2}$.

