Quiz 3

Assume that

- X₁, X₂,..., X_n is a random sample from a normal population with mean μ₁ and variance σ²₁.
- Y_1, Y_2, \ldots, Y_n is a random sample from a normal population with mean μ_2 and variance σ_2^2 .
- The X and Y samples are independent of each other.
- (a) Compute (in terms of $\mu_1, \mu_2, \sigma_1, \sigma_2, n$)
 - $E[\bar{X} \bar{Y}]$
 - $Var[\bar{X} \bar{Y}]$ and $\sigma_{\bar{X} \bar{Y}}$

(b) Assuming that n = 25, $\sigma_1 = \sigma_2 = 5$, $\bar{x} = 20$ and $\bar{y} = 10$, construct the 95% confidence interval for $\mu_1 - \mu_2$.