Review

December 4th, 2017

Att.

• Final exam:

Course evaluation

Overview

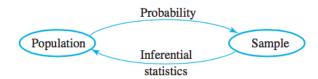
Week 2 · · · · ·	Chapter 6: Statistics and Sampling Distributions
Week 4 · · · · ·	Chapter 7: Point Estimation
Week 7 · · · · ·	Chapter 8: Confidence Intervals
Week 10	Chapter 9: Tests of Hypotheses
Week 12 · · · · •	Chapter 10: Two-sample inference

Chapter 6: Statistics and Sampling Distributions

Chapter 6

- 6.1 Statistics and their distributions
- 6.2 The distribution of the sample mean
- 6.3 The distribution of a linear combination

Random sample



Definition

The random variables $X_1, X_2, ..., X_n$ are said to form a (simple) random sample of size n if

- \bullet the X_i 's are independent random variables

Section 6.1: Sampling distributions

- If the distribution and the statistic T is simple, try to construct the pmf of the statistic
- ② If the probability density function $f_X(x)$ of X's is known, the
 - \bullet try to represent/compute the cumulative distribution (cdf) of T

$$\mathbb{P}[T \leq t]$$

ullet take the derivative of the function (with respect to t)

Section 6.3: Linear combination of normal random variables

Theorem

Let $X_1, X_2, ..., X_n$ be independent normal random variables (with possibly different means and/or variances). Then

$$T = a_1 X_1 + a_2 X_2 + \ldots + a_n X_n$$

also follows the normal distribution.

Section 6.3: Computations with normal random variables

If X has a normal distribution with mean μ and standard deviation σ , then

$$Z = \frac{X - \mu}{\sigma}$$

has a standard normal distribution. Thus

$$\begin{split} P(a \leq X \leq b) &= P\left(\frac{a - \mu}{\sigma} \leq Z \leq \frac{b - \mu}{\sigma}\right) \\ &= \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right) \\ P(X \leq a) &= \Phi\left(\frac{a - \mu}{\sigma}\right) \quad P(X \geq b) = 1 - \Phi\left(\frac{b - \mu}{\sigma}\right) \end{split}$$

Section 6.3: Linear combination of random variables

$\mathsf{Theorem}$

Let $X_1, X_2, ..., X_n$ be independent random variables (with possibly different means and/or variances). Define

$$T = a_1 X_1 + a_2 X_2 + \ldots + a_n X_n,$$

then the mean and the standard deviation of T can be computed by

- $E(T) = a_1 E(X_1) + a_2 E(X_2) + \ldots + a_n E(X_n)$
- $\bullet \ \sigma_T^2 = a_1^2 \sigma_{X_1}^2 + a_2^2 \sigma_{X_2}^2 + \ldots + a_n^2 \sigma_{X_n}^2$

Section 6.2: Distribution of the sample mean

Theorem

Let X_1, X_2, \ldots, X_n be a random sample from a distribution with mean μ and variance σ^2 . Then, in the limit when $n \to \infty$, the standardized version of \bar{X} have the standard normal distribution

$$\lim_{n\to\infty} \mathbb{P}\left(\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \le z\right) = \mathbb{P}[Z \le z] = \Phi(z)$$

Rule of Thumb:

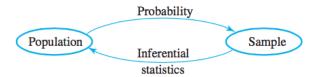
If n > 30, the Central Limit Theorem can be used for computation.

Chapter 7: Point Estimation

Chapter 7: Point estimates

- 7.1 Point estimate
 - unbiased estimator
 - mean squared error
- 7.2 Methods of point estimation
 - method of moments
 - method of maximum likelihood.

Point estimate



Definition

A point estimate $\hat{\theta}$ of a parameter θ is a single number that can be regarded as a sensible value for θ .

$$\begin{array}{ccc} \text{population parameter} \Longrightarrow & \textit{sample} & \Longrightarrow & \textit{estimate} \\ \theta & \Longrightarrow X_1, X_2, \dots, X_n \Longrightarrow & \hat{\theta} \end{array}$$

Mean Squared Error & Bias-variance decomposition

Definition

The mean squared error of an estimator $\hat{\theta}$ is

$$E[(\hat{\theta} - \theta)^2]$$

Theorem

$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2] = V(\hat{\theta}) + (E(\hat{\theta}) - \theta)^2$$

Bias-variance decomposition

Mean squared error = variance of estimator $+ (bias)^2$

Unbiased estimators

Definition

A point estimator $\hat{\theta}$ is said to be an unbiased estimator of θ if

$$E(\hat{\theta}) = \theta$$

for every possible value of θ .

Unbiased estimator

$$\Leftrightarrow$$
 Bias = 0

 \Leftrightarrow Mean squared error = variance of estimator

Example

Problem

Consider a random sample X_1, \ldots, X_n from the pdf

$$f(x) = \frac{1 + \theta x}{2} \qquad -1 \le x \le 1$$

Show that $\hat{\theta} = 3\bar{X}$ is an unbiased estimator of θ .

Method of moments: ideas

• Let X_1, \ldots, X_n be a random sample from a distribution with pmf or pdf

$$f(x; \theta_1, \theta_2, \ldots, \theta_m)$$

• Assume that for $k = 1, \ldots, m$

$$\frac{X_1^k + X_2^k + \ldots + X_n^k}{n} = E(X^k)$$

• Solve the system of equations for $\theta_1, \theta_2, \dots, \theta_m$

Method of moments: example

Problem

Suppose that for a parameter $0 \le \theta \le 1$, X is the outcome of the roll of a four-sided tetrahedral die

Suppose the die is rolled 10 times with outcomes

Use the method of moments to obtain an estimator of θ .

Midterm: Problem 2a

Problem

Let $X_1, X_2, ..., X_n$ represent a random sample from a distribution with pdf

$$f(x,\theta) = \frac{2x}{\theta+1}e^{-x^2/(\theta+1)}, \quad x > 0$$

It can be shown that

$$E(X^2-1)=\theta$$

Use this fact to construct an estimator of θ based on the method of moments.

Sketch:

$$E(X^2) = \theta - 1$$

MoM:

$$E(X^2) = \frac{X_1^2 + X_2^2 + \ldots + X_n^2}{n}$$

Maximum likelihood estimator

• Let $X_1, X_2, ..., X_n$ have joint pmf or pdf

$$f_{joint}(x_1, x_2, \ldots, x_n; \theta)$$

where θ is unknown.

- When x_1, \ldots, x_n are the observed sample values and this expression is regarded as a function of θ , it is called the likelihood function.
- The maximum likelihood estimates θ_{ML} are the value for θ that maximize the likelihood function:

$$f_{joint}(x_1, x_2, \dots, x_n; \theta_{ML}) \ge f_{joint}(x_1, x_2, \dots, x_n; \theta) \quad \forall \theta$$

How to find the MLE?

- Step 1: Write down the likelihood function.
- Step 2: Can you find the maximum of this function?
- Step 3: Try taking the logarithm of this function.
- Step 4: Find the maximum of this new function.

To find the maximum of a function of θ :

- ullet compute the derivative of the function with respect to heta
- set this expression of the derivative to 0
- solve the equation

Midterm: Problem 2b

Problem

Let $X_1, X_2, ..., X_n$ represent a random sample from a distribution with pdf

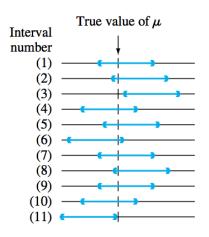
$$f(x,\theta) = \frac{2x}{\theta+1}e^{-x^2/(\theta+1)}, \quad x > 0$$

Derive the maximum-likelihood estimator for parameter θ based on the following dataset with n=10

 $17.85,\ 11.23,\ 14.43,\ 19.27,\ 5.59,\ 6.36,\ 9.41,\ 6.31,\ 13.78,\ 11.95$

Chapters 8 and 10: Confidence intervals

Interpreting confidence interval



95% confidence interval: If we repeat the experiment many times, the interval contains μ about 95% of the time

Confidence intervals

- By target
 - Chapter 8: Confidence intervals for population means
 - Chapter 8: Prediction intervals for an additional sample
 - Chapter 10: Confidence intervals for difference between two population means
 - independent samples
 - paired samples
- By types
 - (Standard) two-sided confidence intervals
 - One-sided confidence intervals (confidence bounds)
- By distributions of the statistics
 - z-statistic
 - t-statistic

Chapter 8: Confidence intervals

- Section 8.1
 - Normal distribution, σ is known
- Section 8.2
 - Normal distribution, σ is known
 - n > 40
- Section 8.3
 - Normal distribution, σ is known
 - n is small
 - \rightarrow t-distribution

Section 8.1

Assumptions:

- Normal distribution
- \bullet σ is known

A $100(1-\alpha)\%$ confidence interval for the mean μ of a normal population when the value of σ is known is given by

$$\left(\bar{x} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right) \tag{8.5}$$

or, equivalently, by $\bar{x} \pm z_{\alpha/2} \cdot \sigma / \sqrt{n}$.

Section 8.2

If after observing $X_1 = x_1$, $X_2 = x_2$,..., $X_n = x_n$ (n > 40), we compute the observed sample mean \bar{x} and sample standard deviation s. Then

$$\left(\bar{x}-z_{\alpha/2}\frac{s}{\sqrt{n}},\bar{x}+z_{\alpha/2}\frac{s}{\sqrt{n}}\right)$$

is a 95% confidence interval of μ

Section 8.3

Let \bar{x} and s be the sample mean and sample standard deviation computed from the results of a random sample from a normal population with mean μ . Then a $100(1 - \alpha)\%$ confidence interval for μ , the one-sample t CI, is

$$\left(\overline{x} - t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}}, \overline{x} + t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}}\right) \tag{8.15}$$

or, more compactly, $\bar{x} \pm t_{\alpha/2,n-1} \cdot s/\sqrt{n}$.

An upper confidence bound for μ is

$$\bar{x} + t_{\alpha,n-1} \cdot \frac{s}{\sqrt{n}}$$

and replacing + by – in this latter expression gives a **lower confidence** bound for μ ; both have confidence level $100(1 - \alpha)\%$.

Prediction intervals

- We have available a random sample X_1, X_2, \dots, X_n from a normal population distribution
- We wish to predict the value of X_{n+1} , a single future observation.

A prediction interval (PI) for a single observation to be selected from a normal population distribution is

$$\bar{x} \pm t_{\alpha/2, n-1} \cdot s \sqrt{1 + \frac{1}{n}} \tag{8.16}$$

The prediction level is $100(1 - \alpha)\%$.

Confidence intervals: difference between two means

- Independent samples
 - ① $X_1, X_2, ..., X_m$ is a random sample from a population with mean μ_1 and variance σ_1^2 .
 - ② $Y_1, Y_2, ..., Y_n$ is a random sample from a population with mean μ_2 and variance σ_2^2 .
 - The X and Y samples are independent of each other.
- Paired samples
 - There is only one set of n individuals or experimental objects
 - 2 Two observations are made on each individual or object

Difference between population means: independent samples

The two-sample t confidence interval for $\mu_1 - \mu_2$ with confidence level $100(1 - \alpha)\%$ is then

$$\overline{x} - \overline{y} \pm t_{\alpha/2,\nu} \sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}$$

A one-sided confidence bound can be calculated as described earlier.

Difference between population means: paired samples

• The paired t CI for μ_D is

$$ar{d} \pm t_{lpha/2,n-1} rac{s_D}{\sqrt{n}}$$

• A one-sided confidence bound results from retaining the relevant sign and replacing $t_{\alpha/2,n-1}$ by $t_{\alpha,n-1}$.

Principles for deriving CIs

If X_1, X_2, \ldots, X_n is a random sample from a distribution $f(x, \theta)$, then

- Find a random variable $Y = h(X_1, X_2, ..., X_n; \theta)$ such that he probability distribution of Y does not depend on θ or on any other unknown parameters.
- Find constants a, b such that

$$P[a < h(X_1, X_2, \dots, X_n; \theta) < b] = 1 - \alpha$$

ullet Manipulate these inequality to isolate heta

$$P[\ell(X_1, X_2, \dots, X_n) < \theta < u(X_1, X_2, \dots, X_n)] = 1 - \alpha$$

Examples

• For μ and X_{n+1}

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}, \quad \frac{\bar{X} - X_{n+1}}{S\sqrt{1 + 1/n}} \sim t_{n-1}$$

• Difference between two means [independent samples]

$$rac{(ar{X}-ar{Y})-(\mu_1-\mu_2)}{\sqrt{rac{S_1^2}{m}+rac{S_2^2}{n}}}\sim t_
u$$

Difference between two means [paired samples]

$$T = \frac{\bar{D} - \mu_D}{S_D / \sqrt{n}} \sim t_{n-1}$$

Chapters 9 and 10: Tests of hypotheses

Test of hypotheses

- By target
 - Chapter 9: population mean
 - Chapter 10: difference between two population means
 - independent samples
 - paired samples
- By the alternative hypothesis
 - >
 - <
 - ≠
- By the type of test
 - z-test
 - t-test
- By method of testing
 - Rejection region
 - p-value

Hypothesis testing

In any hypothesis-testing problem, there are two contradictory hypotheses under consideration

- The null hypothesis, denoted by H_0 , is the claim that is initially assumed to be true
- The alternative hypothesis, denoted by H_a , is the assertion that is contradictory to H_0 .

Implicit rules

- H_0 will always be stated as an equality claim.
- \bullet If θ denotes the parameter of interest, the null hypothesis will have the form

$$H_0: \theta = \theta_0$$

- θ_0 is a specified number called the null value
- The alternative hypothesis will be either:
 - H_a : $\theta > \theta_0$
 - H_a : $\theta < \theta_0$
 - H_a : $\theta \neq \theta_0$

Test procedures

A test procedure is specified by the following:

- A test statistic T: a function of the sample data on which the decision (reject H_0 or do not reject H_0) is to be based
- A rejection region \mathcal{R} : the set of all test statistic values for which H_0 will be rejected
- A type I error consists of rejecting the null hypothesis H₀ when it is true
- A type II error involves not rejecting H_0 when H_0 is false.

Hypothesis testing for one parameter: rejection region method

- Identify the parameter of interest
- 2 Determine the null value and state the null hypothesis
- State the appropriate alternative hypothesis
- Give the formula for the test statistic
- **5** State the rejection region for the selected significance level α
- Ompute statistic value from data
- Decide whether H_0 should be rejected and state this conclusion in the problem context

Normal population with known σ

Null hypothesis: $\mu = \mu_0$ Test statistic:

$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$

. .

Alternative Hypothesis

$$H_a$$
: $\mu > \mu_0$
 H_a : $\mu < \mu_0$
 H_a : $\mu \neq \mu_0$

Rejection Region for Level α Test

$$z \ge z_{\alpha}$$
 (upper-tailed test)
 $z \le -z_{\alpha}$ (lower-tailed test)
either $z \ge z_{\alpha/2}$ or $z \le -z_{\alpha/2}$ (two-tailed test)

Large-sample tests

Null hypothesis: $\mu = \mu_0$ Test statistic:

$$Z = \frac{\bar{X} - \mu_0}{S/\sqrt{n}}$$

Alternative Hypothesis

Rejection Region for Level α Test

 $H_{\rm a}: \mu > \mu_0 \ H_{\rm a}: \mu < \mu_0 \ H_{\rm a}: \mu \neq \mu_0$

 $z \ge z_{\alpha}$ (upper-tailed test) $z \le -z_{\alpha}$ (lower-tailed test) either $z \ge z_{\alpha/2}$ or $z \le -z_{\alpha/2}$ (two-tailed test)

[Does not need the normal assumption]

t-test

Null hypothesis:
$$H_0$$
: $\mu = \mu_0$
Test statistic value: $t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}$

Alternative Hypothesis

Rejection Region for a Level α Test

$$H_a$$
: $\mu > \mu_0$ $t \ge t_{\alpha,n-1}$ (upper-tailed)
 H_a : $\mu < \mu_0$ $t \le -t_{\alpha,n-1}$ (lower-tailed)
 H_a : $\mu \ne \mu_0$ either $t \ge t_{\alpha/2,n-1}$ or $t \le -t_{\alpha/2,n-1}$ (two-tailed)

[Require normal assumption]

P-value

DEFINITION

The **P-value** (or observed significance level) is the smallest level of significance at which H_0 would be rejected when a specified test procedure is used on a given data set. Once the P-value has been determined, the conclusion at any particular level α results from comparing the P-value to α :

- P-value ≤ α ⇒ reject H₀ at level α.
- **2.** P-value $> \alpha \Rightarrow$ do not reject H_0 at level α .

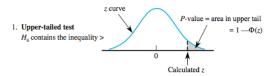
Testing by P-value method

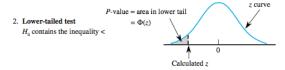
DECISION
RULE BASED
ON THE
P-VALUE

Select a significance level α (as before, the desired type I error probability). Then reject H_0 if P-value $\leq \alpha$; do not reject H_0 if P-value $> \alpha$

Remark: the smaller the P-value, the more evidence there is in the sample data against the null hypothesis and for the alternative hypothesis.

P-values for z-tests





3. Two-tailed test

H_a contains the inequality ≠

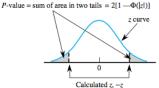


Figure 9.7 Determination of the P-value for a z test

P-values for t-tests

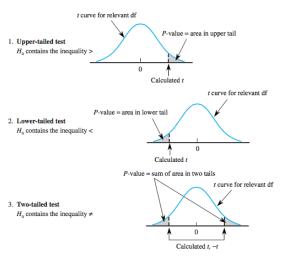


Figure 9.8 P-values for t tests

Testing by rejection region method

- \bullet Parameter of interest: $\mu = {\rm true}$ average activation temperature
- Hypotheses

$$H_0: \mu = 130$$

 $H_a: \mu \neq 130$

Test statistic:

$$z = \frac{\bar{x} - 130}{1.5/\sqrt{n}}$$

- Rejection region: either $z \le -z_{0.005}$ or $z \ge z_{0.005} = 2.58$
- Substituting $\bar{x} = 131.08$, $n = 25 \rightarrow z = 2.16$.
- Note that -2.58 < 2.16 < 2.58. We fail to reject H_0 at significance level 0.01.
- The data does not give strong support to the claim that the true average differs from the design value.

Testing by p-value

- 1. Parameter of interest: μ = true average wafer thickness
- **2.** Null hypothesis: H_0 : $\mu = 245$
- 3. Alternative hypothesis: H_a : $\mu \neq 245$
- **4.** Formula for test statistic value: $z = \frac{\bar{x} 245}{s/\sqrt{n}}$
- 5. Calculation of test statistic value: $z = \frac{246.18 245}{3.60/\sqrt{50}} = 2.32$
- **6.** Determination of *P*-value: Because the test is two-tailed,

$$P$$
-value = $2[1 - \Phi(2.32)] = .0204$

7. Conclusion: Using a significance level of .01, H₀ would not be rejected since .0204 > .01. At this significance level, there is insufficient evidence to conclude that true average thickness differs from the target value.

Interpreting P-values

A P-value:

- is not the probability that H_0 is true
- is not the probability of rejecting H_0
- is the probability, calculated assuming that H_0 is true, of obtaining a test statistic value at least as contradictory to the null hypothesis as the value that actually resulted

Testing the difference between two population means

- Setting: independent normal random samples X_1, X_2, \ldots, X_m and Y_1, Y_2, \ldots, Y_n with known values of σ_1 and σ_2 . Constant Δ_0 .
- Null hypothesis:

$$H_0: \mu_1 - \mu_2 = \Delta_0$$

- Alternative hypothesis:
 - (a) $H_a: \mu_1 \mu_2 > \Delta_0$
 - (b) $H_a: \mu_1 \mu_2 < \Delta_0$
 - (c) $H_a: \mu_1 \mu_2 \neq \Delta_0$
- When $\Delta = 0$, the test (c) becomes

$$H_0: \mu_1 = \mu_2$$

$$H_a$$
 : $\mu_1 \neq \mu_2$

Difference between 2 means (independent samples)

Proposition

The **two-sample** t test for testing H_0 : $\mu_1 - \mu_2 = \Delta_0$ is as follows:

Test statistic value:
$$t = \frac{\bar{x} - \bar{y} - \Delta_0}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}}$$

Alternative Hypothesis Rejection Region for Approximate Level \(\alpha \) Test

$$\begin{array}{ll} \textit{H}_{a}\text{: } \mu_{1}-\mu_{2}>\Delta_{0} & \textit{t} \geq \textit{t}_{\alpha,\nu} \text{ (upper-tailed test)} \\ \textit{H}_{a}\text{: } \mu_{1}-\mu_{2}<\Delta_{0} & \textit{t} \leq -\textit{t}_{\alpha,\nu} \text{ (lower-tailed test)} \\ \textit{H}_{a}\text{: } \mu_{1}-\mu_{2} \neq \Delta_{0} & \text{either } \textit{t} \geq \textit{t}_{\alpha/2,\nu} \text{ or } \textit{t} \leq -\textit{t}_{\alpha/2,\nu} \text{ (two-tailed test)} \end{array}$$

A P-value can be computed as described in Section 9.4 for the one-sample t test.