
  

  

Abstract—A multiple-model approach to open-loop control of 

T-cell signaling pathways is presented.  Mathematical models of 

the T-cell signaling pathway are used to inform the controller 

design.  The proposed framework employs a model predictive 

control strategy to reduce the computational complexity of the 

open loop control problem.  Predictions from each model are 

weighted using adaptive Akaike weights that are iteratively 

computed for each controller update step based upon the most 

relevant training data subsets.  This process accounts for the 

fact that models differ in their ability to accurately reflect the 

system dynamics under different experimental conditions.  The 

algorithm is evaluated in silico and simulations demonstrate 

how the model weighting strategy more effectively manages the 

inaccuracies of any single model.  Furthermore, the multiple-

model control strategy is evaluated in vitro to direct T-cell 

signaling.  The controller-derived input sequence successfully 

drives the relative concentration of phosphorylated Erk along 

the desired trajectory when implemented in the laboratory. 

I. INTRODUCTION 

T lymphocytes (T cells) are an integral part of the human 

body’s natural defense against the threats of invading 

pathogens and cancerous cells.  Engagement of T cell 

receptors (TCRs) immediately initiates intracellular signal 

transduction pathways resulting in the activation of 

transcription factors that ultimately direct the cell’s action.  

During this process, manipulations to the early signaling 

events within the transduction pathways can alter the cell’s 

response through changes to the active transcription factor 

profile.  Traditional biochemical assays can monitor only a 

limited number of signaling molecules and do not support 

real-time observations.  As a result, open-loop control 

provides a suitable tool for designing systematic 

manipulations to obtain desired signaling responses. 

Successful open-loop controller design requires an 

accurate mathematical model of the underlying process.   

Unfortunately, most mathematical models are crude 

abstractions of biological reality and pose unique challenges 
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in control applications [1].  Multiple models currently exist 

that describe aspects of the TCR-activated signaling 

pathways that differ in dominant species, network structure, 

parameter values, and functional representation [2-5].  As 

with most signaling pathways, the limited amount of pre-

existing quantitative data and qualitative observations is 

unable to unambiguously discriminate between the models.   

Multiple models, or scenarios, have been previously used 

to improve robustness in closed-loop model-based control to 

parametric uncertainty [6, 7].  Rao et al. [8] computed 

control actions by weighting step-response models using 

relative Bayesian probabilities to control hemodynamic 

variables in hypertensive subjects.  Kuure-Kinsey et al. [9] 

extended the concepts in [8] for disturbance rejection in a 

van de Vusse reactor, using an average linear prediction 

model generated by multiple Bayesian probability-weighted 

linear models.  The recursive weighting system effectively 

eliminated the “hard switch” between controllers.  Noble et 

al. [10] predictably manipulated cell differentiation 

experimentally with a model predictive controller based on 

multiple data-consistent parameter characterizations.  All of 

these approaches use feedback that is not available for 

control of signaling pathways. Furthermore, the limited 

signaling data do not support Bayesian methods.  

Consequently, existing techniques for multiple-model control 

are insufficient for controlling T-cell signaling. 

In this paper we present a practical framework for 

designing open-loop control informed by multiple models for 

directing intracellular signaling dynamics in T cells.  To 

address model uncertainty, we consider weighted predictions 

made by multiple nonlinear ordinary differential models of 

T-cell signaling to design controller actions (manipulations).  

Prediction model weights are based upon Akaike’s 

Information Criterion (AIC), an information-theoretic 

method previously used for model selection that considers 

complexity and fitness to existing experimental data [11, 12].  

To facilitate the open-loop controller design, we employ the 

model predictive control framework.  Thus we propose an 

adaptive Akaike-based multiple-model predictive control for 

open-loop control of T-cell signaling.  This strategy is 

evaluated using simulated and in vitro experiments on a well-

established cell line (Jurkat) typically used for studying T-

cell signaling pathways. 

II. METHODS 

The control strategy presented herein employs multiple 

prediction models to form a compromise control sequence 

that ameliorates the effects of the inaccuracies of any single 

model.  As illustrated in Fig. 1, the first stage is to select an 
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Figure 1.  Block diagram of multiple model control strategy. (A) Overview 

of open-loop configuration for implementation of multiple model-based 

control of T-cell signaling in the laboratory. (B) Detailed flowchart of 

adaptive Akaike-weighted multiple-model control algorithm. 

appropriate set of prediction models to populate the model 

bank.  Using initial model weights estimated from training 

data, the multiple-model controller surveys the input space 

and proposes a control action for the next control update 

step.  Since models differ in accuracy for different scenarios 

or data sets, model weights are re-estimated using the portion 

of the training data that most closely corresponds to the 

proposed control action. Adaptation continues until model 

weights (and associated control action) no longer change or a 

maximum iteration is reached.  The process repeats for each 

control update step and continues until the entire open-loop 

control sequence has been specified and is ready to be 

applied to the simulated or experimental plant. 

A. Model Representation 

The multiple-model control strategy is based on the use of 

a set of mathematical models, },...,{
)()1( Mn

MMM = , of the 

general form given by (1): 
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where the superscript i denotes the model number.  The state 

variables, manipulated variables (control inputs), process 

parameters and process outputs are nx ℜ∈ , du ℜ∈ , pℜ∈θ  

and my ℜ∈  respectively, and ndnf ℜ→ℜ×ℜ:  and 

mng ℜ→ℜ:  are twice continuously differentiable functions 

for process dynamics and outputs, respectively. 

B. Prediction Model Bank 

The targeted signaling pathway is the TCR-activated 

extracellular signal-regulated kinase (Erk, or MAPK) 

pathway as shown in Fig. 2.  The engagement of the TCR 

causes recruitment of protein tyrosine kinase Zap70 and Src-

family kinases Lck and Fyn, which initiates signal 

propagation to the Erk-MAPK cascade.  Two ordinary 

differential equation (ODE) models of the TCR-mediated 

signaling cascade are used for the basis of the model bank [2, 

3] with four additional hybrid models created from these two 

by replacing the ubiquitous MAPK cascade portion (Fig. 2B) 

of the signaling pathway with models from Levchenko et al. 

[13].  The Zheng et al. [2] model (Z0) contains primarily 

first- and second-order mass action kinetics with 24 ODEs 

and 53 reaction parameters.  The Lipniacki et al. [3] model 

(L0) differs in that it explicitly incorporates SHP-mediated 

negative feedback and Erk-mediated positive feedback to 

characterize the kinetic proofreading inherent to the TCR 

signaling pathway.  The model consists of 37 ODEs and 97 

parameters derived from mass action kinetics.   

To illustrate the controller method with a sufficiently rich 

set of ODE-based models without additional complications 

derived from fuzzy logic or Boolean models,  we formulated 

four hybrid models by modifying the Erk-MAPK cascade 

equations in Z0 and L0 with two alternative MAPK models 

presented by Levchenko et al. [13] that employ Michaelis-

Menten-derived rate equations with and without the presence 

of scaffold proteins.  The Levchenko model without the 

scaffold contains 22 ODEs with 30 kinetic parameters while 

the version with scaffold proteins contains 86 ODEs with 

300 parameters.  Fig. 2C illustrates how these additional 

models were formed.  We denote these additional models by:  

Z0+Scaffold (ZS), Z0+No Scaffold (ZNS), L0+Scaffold (LS) 

and L0+No Scaffold (LNS). 

The output of each model is considered to be the total 

concentration of phosphorylated Erk.  The prediction models 

were modified to contain control inputs that simulate the 

action of two commercially available reagents that regulate 

T-cell signaling: sanguinarine and U0126 (shown in Fig. 2 in 

red).  Sanguinarine is an inhibitor of Erk phosphatase and 

can lead to increased phosphorylation of Erk [14].  U0126 

on the other hand is a small molecule inhibitor of Mek with 

high selectivity [15] which effectively inhibits activation of 

Erk.  For each prediction model, optimal parameter vectors 

were determined by minimizing the residual sum of squares 

between model outputs and training data.  To account for the 

differences in scale between the models, the outputs were 

normalized to ensure that the peak uncontrolled response 

scaled to unity. 

C. Akaike Model Weight Calculation 

Using inferences made by multiple competing prediction 

models with varying levels of accuracy and complexity 

necessitates the use of a weighting system to rank our 

confidence in each model.  Akaike’s Information Criterion 

(AIC) provides a practical measure of the tradeoff between 

model fitness and complexity by estimating the theoretical 

Kullback-Leibler (KL) “distance”, or loss of information, 

between an approximating model and full reality [11].  

Denoting the parameter estimates θ̂ , given model M
(i)

 and a 

set of data y, the relative KL information is approximated by 

the biased log-likelihood function defined by (2): 

381



  

LckLck

ZAP70ZAP70

ζLATLAT

PLCγ1PLCγ1

Grb2Grb2

SOSSOS

GADSGADS
SLP-76SLP-76ItkItk

DAG+IP3

PKCPKC

pY394

pY319

RasRas

RafRaf

MekMek

ErkErk

RasGRPRasGRP

TCR

PMA

PD90589

U0126

SL327
Olomoucine

piceatannol

(amino)genistein

PP1, PP2

Rott.

Rosmarinic acid

Sanguinarine

A

RafRaf

MekMek

ErkErk

PP

MekMek MekMek

PP PP PP

ErkErk ErkErk

PP PP PP

Sanguinarine

U0126

B

Z
he

n
g

(Z
0
)

L
ip

n
ia

ck
i

(L
0
)

Z
h
e
n
g

T
o

p
 M

o
d
u

le
 (

Z
)

L
ip

n
ia

ck
i

T
o

p
 M

o
d
u

le
 (

L
)

L
ev

ch
e
n
k
o

 N
o

 S
c
af

fo
ld

 (
N

S
)

L
ev

ch
e
n
k
o

 S
ca

ff
o

ld
 (

S
)

C

LckLck

ZAP70ZAP70

ζLATLAT

PLCγ1PLCγ1

Grb2Grb2

SOSSOS

GADSGADS
SLP-76SLP-76ItkItk

DAG+IP3

PKCPKC

pY394

pY319

RasRas

RafRaf

MekMek

ErkErk

RasGRPRasGRP

TCR

PMA

PD90589

U0126

SL327
Olomoucine

piceatannol

(amino)genistein

PP1, PP2

Rott.

Rosmarinic acid

Sanguinarine

A

LckLck

ZAP70ZAP70

ζLATLAT

PLCγ1PLCγ1

Grb2Grb2

SOSSOS

GADSGADS
SLP-76SLP-76ItkItk

DAG+IP3

PKCPKC

pY394

pY319

RasRas

RafRaf

MekMek

ErkErk

RasGRPRasGRP

TCR

PMA

PD90589

U0126

SL327
Olomoucine

piceatannol

(amino)genistein

PP1, PP2

Rott.

Rosmarinic acid

Sanguinarine

A

RafRaf

MekMek

ErkErk

PP

MekMek MekMek

PP PP PP

ErkErk ErkErk

PP PP PP

Sanguinarine

U0126

B
RafRaf

MekMek

ErkErk

PP

MekMek MekMek

PP PP PP

ErkErk ErkErk

PP PP PP

Sanguinarine

U0126

B

Z
he

n
g

(Z
0
)

L
ip

n
ia

ck
i

(L
0
)

Z
h
e
n
g

T
o

p
 M

o
d
u

le
 (

Z
)

L
ip

n
ia

ck
i

T
o

p
 M

o
d
u

le
 (

L
)

L
ev

ch
e
n
k
o

 N
o

 S
c
af

fo
ld

 (
N

S
)

L
ev

ch
e
n
k
o

 S
ca

ff
o

ld
 (

S
)

C

Z
he

n
g

(Z
0
)

L
ip

n
ia

ck
i

(L
0
)

Z
h
e
n
g

T
o

p
 M

o
d
u

le
 (

Z
)

L
ip

n
ia

ck
i

T
o

p
 M

o
d
u

le
 (

L
)

L
ev

ch
e
n
k
o

 N
o

 S
c
af

fo
ld

 (
N

S
)

L
ev

ch
e
n
k
o

 S
ca

ff
o

ld
 (

S
)

C

 

Figure 2.  TCR-mediated signaling pathway. (A) General representation of 

critical components and reactions that are characterized by the prediction 

models. (B) Expanded view of reaction in the Erk-MAPK cascade.  

Arrowheads denote activation of target molecule or reaction direction and 

diamond heads denote inhibition.  Molecules in green and red are 

activators and inhibitors, respectively, and denote possible control 

reagents. (C) Illustration depicting how modules are combined to form 

prediction models in the model bank. 

 

 KyAIC ii 2))|ˆ(log(2 )()( +−= θl , (2) 

where l  is the log-likelihood function and K, denoting the 

number of model parameters, is the bias estimate (the factor 

2 was introduced for historical reasons).  Assuming normally 

distributed errors with constant variance, then the AIC can 

be estimated as (3): 

 KNNAIC iiii 2)/log( )()(T)()( +Λ= εε , (3) 

where N is the number of data and 
T)(

1
)(

1
)( ],...,[

exp
N

i
N

expii yyyy −−=ε  is the vector of residuals 

between experimental data expy  and their corresponding 

outputs )(iy  from the i
th

 model.  The residual weighting 

matrix, )(iΛ  , is traditionally the identity although herein we 

will use it to selectively weight models and subsets of the 

data as further explained in Section E.   

  If 40/ <KN , an additional bias term is introduced to 

accommodate small samples to yield the corrected-AIC 

(AICc) given by (4): 
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It is important to note that the AICc values are only 

meaningful relative to one another.  This stems from the AIC 

being a relative rather than absolute estimate of KL distance.  

As a result, only the quantity min
)()( AICcAICc ii −=∆  will 

be considered for each model.  It follows that the relative 

likelihoods of the models are given by the Akaike weights, 

given by (5): 
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The weight )(iω  is considered to be the strength of 

evidence in support of the i
th

 model being the KL best model 

given the data and the set of models [11]. 

D. Akaike-Weighted Multiple-Model Predictive Control 

The multiple-model control strategy is built around the 

conventional MPC framework in order to reduce the 

computational complexity of the open-loop control problem.  

At each update index, the controller surveys the possible 

trajectories stemming from the current state over a finite 

prediction horizon (Hp) and control horizon (Hu) and selects 

the control sequence so that the predicted output tracks a 

desired trajectory.  The initial value of the control sequence 

is set and used to update the states of the prediction models 

so the procedure can repeat for the remaining control update 

steps. 

The control objective function penalizes the error between 

the predicted output for model i and the desired trajectory 

and a measure of the control effort over the prediction 

horizon starting at time sk Tt ∈ , as given by (6): 

 ( ) RUUSYQSYUJ iii T)(T)()( ][][ +−−= , (6) 

where the vectors  T
|

)(
|

)(
1

)( )](),...,([ kHk
i

mkk
ii

p
tytyY +=  and 

T
1 )](),...,([

pHkmk tstsS +=  are the predicted and target 

outputs over Hp, respectively, T
|1|1 )](),...,([ kHkdkk u

tutuU −+=  

are the discrete controller inputs over Hu, and Q and R are 

diagonal weighting matrices associated with the error and 

control effort, respectively. 

The optimal control sequence is determined by solving the 

optimization problem posed in (7): 

 
,    s.t.                

)()(  min  arg

maxmin

T*

UUU

UJUU
U

≤≤

= ω
 (7) 

where ω  and J are vectors of Akaike weights and objective 

function values associated with the nM prediction models.  

Thus the control objective minimizes a weighted aggregate 

of the predictions from multiple models that mitigates the 

inaccuracies of any single model.  Herein, the solution to (7) 

is computed by MATLAB’s constrained nonlinear 

optimization solver (fmincon). 

E. Akaike Model Weight Adaptation 

As illustrated in Fig. 1, model weights, computed using 

(3)-(5), are updated from their original values based on the 

proposed control action at each step.  Primarily due to the 

effects of model-plant mismatch, it is quite common for a 

model’s fitness quality to change between data sets generated 

under different experimental conditions (i.e. different levels 

or combinations of the control inputs).  Therefore, we 

adaptively update the Akaike weights to consider only the 

training data collected under conditions that most closely 

resemble the proposed control action.   

For a given number of training data sets, let uk,j be the 

input used to generate the observations exp
jky ,

 for the j
th

 

experiment involving the k
th

 control variable.  Furthermore, 

let *
ku  be the proposed control action for the k

th
 control 

variable at the current update step.  For the following 

calculations, the magnitudes of uk,j and *
ku  should be 
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normalized by their corresponding upper bounds to prevent 

giving disproportionate weight to larger values.  The relative 

distance between the points on the input space and the 

predicted control action in the k
th

 dimension is 

|| *
,, kjkjk uu −=δ .  Now, let us only consider the points in 

each dimension that neighbor *
ku  since they most directly 

correspond to the current proposed control action.  Let Rk 

refer to these points, that is, the set of indices of two points 

in the k
th

 dimension forming the smallest interval containing 
*
ku .  This leads to the relative weight of each point in Rk with 

respect to *
ku  defined by (8): 

 
k

rk
rk

L

,
, 1

δ
α −= , (8) 

for r in Rk, where Lk is the distance between the two points in 

Rk.  Now, the residuals between the observations exp
rky ,

, where 

kRr ∈ , and the corresponding outputs predicted by each 

model under the same conditions will be weighted by the 

term denoted by (9): 

 
rkd

q q

k
rk

u

u
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1

*

*

, αβ
∑ =

= , (9) 

where d is the dimension of the input space.  The term βk,r is 

used to weight the residuals computed from data generated 

under experimental conditions most similar to the proposed 

control action.  We use the weights in (9) as the entries in a 

diagonal matrix, Λ , to be used as the residual weighting 

matrix in (3).  The corresponding residual is the vector of 

differences, 
exp
R

i
R kk

yy −)(
, over the corresponding set of Rk and 

i.  Using updated definitions for Λ  and )(iε  to only include 

the subset of relevant data, new Akaike weights are 

computed using (3)-(5).  In essence, this adaptive weighting 

strategy gives priority to the models best supported by the 

data relevant to the experiment at hand in the calculation of 

the Akaike weights for the next iteration. 

F. Experimental Methods 

Erk phosphorylation (pErk) data were collected from 

Jurkat T leukemia cell line (Jurkat clone E6.1; ATCC).  

Cells were grown in RPMI 1640 (Sigma) supplemented with 

7.5% heat-inactivated fetal bovine serum (BioWest), 1mM 

sodium pyruvate (Gibco), 12.5 mM HEPES pH 7.4 (Sigma), 

12 µM sodium bicarbonate (Sigma) 50 µM 2-

Mercaptoethanol (Sigma), 50 µg/ml streptomycin and 50 

units/ml penicillin in an incubator at 37ºC in humidified air 

containing 5% carbon dioxide.  Cells were harvested in log-

phase growth and 2 x 10
7
 cells per treatment.  Cells were 

stimulated using anti-human CD3 (10 µg/ml, clone: UCHT-

1, eBioscience) as the stimulatory signal at 37ºC in a water 

bath.   Cells were treated with the Mek1/2 inhibitor U0126 

(Calbiochem) or the MKP inhibitor sanguinarine (Sigma), 

depending on the protocol, dissolved in DMSO at the 

indicated time points with the indicated concentrations.  

Experimental control samples where treated with the same 

amount of DMSO.  Samples of 2 x 10
6
 cells were taken at 

the indicated time points and lysed in 1% NP40 lysis buffer 

(1% NP40, 25 mM Tris, pH 7.4, 150 mM NaCl, 5 mM 

EDTA, 1mM NaV, 10 mM NaF, 10 µg/ml each of aprotinin 

and leupeptin) for 15 min on ice.  Lysates were centrifuged 

for 5 min at 18000 g at 4ºC.  The supernatant was added to 

the same volume of 2X protein solubilizing mixture (PSM, 

25% (w/v) sucrose, 2.5% (w/v) sodium dodecyl sulfate, 25 

mM Tris, 2.5 mM EDTA, 0.05% bromophenol blue) and 

boiled for five minutes.  Proteins were separated via SDS-

PAGE, blotted for phospho-Erk1/2 (Cell Signaling), 

phospho-ZAP-70 (pY319, Cell Signaling) and GAPDH 

(Ambion).  IRDye 800 and 680 secondary anti-mouse and 

anti-rabbit antibodies (Li-Cor) were used for signal detection 

using an Odyssey infrared scanner.  Images of the blots were 

analyzed using ImageJ to produce quantitative data for 

model comparison.  Model predictions were scaled to 

compensate for the fact that the data showed relative 

quantities only rather than absolute concentrations. 

III. RESULTS AND DISCUSSION 

The performance of the open-loop multiple-model control 

strategy for systematically manipulating T-cell signaling 

dynamics is evaluated using two approaches: simulated 

experiments and laboratory experiments.  For simulated 

experiments, the controller is trained with data generated 

from in silico experiments to demonstrate the effectiveness 

of the multiple-model controller and adaptive weighting 

strategy.  For laboratory experiments, the open-loop control 

sequence is administered to a population of Jurkat T cells to 

evaluate its ability to direct TCR-mediated signaling in vitro.  

For this case, training data were also collected from in vitro 

experiments.   In both cases, the training experiments were 

designed to rapidly screen the effects of the control reagents 

on a T cell population (in silico: n = 3; in vitro: n = 1).  In all 

there were 10 experiments: four different doses of 

sanguinarine (5, 10, 20 and 50 µM), five different doses of 

U0126 (0.5, 1, 2, 5 and 10 µM), and an experimental control 

(i.e. no inputs).  Control inputs were added at 5 minutes after 

stimulation by anti-CD3 and samples of pErk were taken at 

0, 2, 5, 10, 12, 15, 20 and 30 minutes. 

For both the simulated and laboratory experiments, the 

desired trajectory (target profile) for the model output is 

defined by the equation 110
1 )1)(1()( −−− +−= tt eets .  It has 

been reported that constitutive activation of the Erk pathway 

is present in high frequency (>50%) in patients suffering 

from acute myeloid leukemia (AML) and is associated with a 

marked reduction in survival duration [16, 17].  This 

suggests it may be therapeutic to rapidly force pErk to 

baseline levels shortly after reaching its peak activity as 

defined by s1.  Manipulated variables u1 and u2 are defined to 

be concentrations of sanguinarine and U0126, respectively.  

The five possible input update steps (dosing times) sT  begin 

at 3 minutes post-stimulation with anti-CD3 and are spaced 5 

minutes apart to accommodate both the rapid dynamics of 

TCR signaling and the experimental constraints on input 

update and observation rates.  The experiment is terminated 

at 30 minutes when no inputs are applied but measurements 
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Figure 3.  Illustrative results of in silico controller implementation.  Row 

labels denote the prediction models used to generate training data (with 

10% Gaussian noise added). (A, D) Akaike weight adaptation for all 

models. (B, E) Control sequence computed by the controller considering all 

six prediction models fitted to simulated data. (C, F) Normalized pErk 

concentration of the plant with multiple model informed open loop control. 

Note that a negative value means that the output is below its initial 

concentration. 
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Figure 4.  In silico single-model controller performance.  Predicted pErk 

dynamics for assumed plants (A) Z0 and (B) LNS.  Legend denotes 

prediction model used to inform the controller and resulting plant output. 
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Figure 5.  Results of in vitro controller implementation. (A) Akaike weight 

adaptation for all prediction models. (B) Control sequence computed by 

the controller considering all six prediction models fitted to in vitro 

training data. (C) Normalized in vitro pErk concentrations collected from 

the experimental control (i.e. no inputs) shown in blue and the multiple-

model open-loop control-based experiment shown in red (n=3 for both 

sets).  Asterisks (*) denote statistically significant differences between 

groups (p<0.05) as calculated by one-way ANOVA with Tukey multiple 

comparisons test.  Data shows mean ± standard error. 

are taken.  The horizons Hu and Hp are set to 1 and 2, 

respectively, and weighting matrices Q and R are each 

chosen to be identity.  Input constraints on sanguinarine and 

U0126 are set to µM 50] [0,  and µM 10] [0, , respectively.  

The rationale for the upper limits come from experimental 

results that indicate saturation effects at levels above the 

specified concentrations. 

A. Simulated Controller Performance 

In the simulated case, the multiple-model controller is 

evaluated six different times, each time assuming a different 

model as the “true” but unknown plant.  Noisy data are 

generated from the “true” plant model using the conditions 

described in the previous section and adding 10% Gaussian 

noise.  For each simulated data set in triplicate, all six 

prediction models are re-fitted to the data and new model 

weights are computed using (3)-(5).  For illustrative 

purposes, only two simulated experiments are shown: (1) Z0 

as the “true” plant and (2) LNS as “true” plant.  It is evident 

from Fig. 3A,D that the accuracy of the prediction models 

partially depends on the training data.  In the case where the 

Z0 plant is assumed, the Akaike weights strongly favor the 

predictions from the Z0 model.  This suggests that its 

predictive capability is unmatched by rival models given the 

available data.  However, when the LNS plant is assumed, the 

weights tended to oscillate between LNS and L0, most likely 

due to the number of shared characteristics between the two 

structures.  This also suggests that the predictive capacity of 

both models changed as a function of the control input 

updates.  As it is unclear which is more favorable, both 

models are used to inform the controller.  In both cases the 

adaptive weighting strategy is able to filter out unlikely 

models given the training data.  As shown in Fig. 3B,E the 

controller chose a ramp-up in U0126 doses between 8 and 13 

minutes for the scenario when Z0 was the “true” but unknown 

plant, while a single bolus-type dose was chosen for the LNS 

plant scenario.  Nevertheless, the plant output tracked the 

target response reasonably well even though the two 

predicted control actions were different (Fig. 3C,F).  This is 

in stark contrast to the performances of single-model 

controllers with similar MPC set-ups (Fig. 4).  When the 

plant and prediction model are mismatched, a likely scenario 

in practice, there is moderate to extreme deterioration in the 

tracking performance (e.g. when ZNS informs the controller). 

B. Experimental Controller Performance 

Training data were collected according to Sections IIF and 

III.  The addition of low to moderate doses of sanguinarine 

had negligible effects on pErk concentrations.  Only the 

highest dose tested caused a sustained elevation of pErk.  On 

the other hand, U0126 produced immediate reductions in 

pErk concentrations even at low doses.  The representation 

of the controller input functions in the prediction models 

were modified to exhibit these trends. 

Starting with the training data, the multiple-model open-

loop control strategy with adaptive Akaike weights is 

implemented to evaluate its ability to direct TCR-mediated 

signaling in vitro.  Comparing Fig. 5A with Fig. 3A reveals 

an interesting contrast between the cases of model training 

with experimental data as opposed to simulated data.  

Initially, ZNS vastly outweighs its rivals, resulting in a control 

strategy based primarily on it alone.  As the open-loop 
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control sequence is being built, however, there is a dramatic 

shift in confidence towards Z0, indicating it is a better fit to 

the relevant data collected under conditions at each of the 

subsequent controller update steps.  Had a single prediction 

model or a fixed weighting strategy been used, one could not 

be as confident in the resulting controller given the data.  

This demonstrates that the models’ predictive capabilities 

can be variable over the input space especially when training 

data is limited and noisy.  Furthermore, this supports the 

usefulness of the adaptive Akaike weights in the open-loop 

multiple-model control problem.  When implemented in the 

laboratory, the proposed control sequence (shown in Fig. 

5B) was able to effectively drive the relative levels of pErk 

along the target trajectory (n = 3, shown in Fig. 5C). 

IV. CONCLUSION AND FUTURE WORK 

This work presents a practical framework for open-loop 

control of uncertain nonlinear systems using multiple models 

to generate predictable dynamical responses.  The model 

weighting strategy employs adaptive Akaike weights that 

give priority to the models most supported by the data 

relevant to the control input at that update step.  This open 

loop controller design pairs multiple model predictive 

control with adaptive Akaike model weights to create a 

cohesive strategy for systematically utilizing the most 

relevant knowledge embedded within limited training data in 

a computationally tractable manner. 

In silico controller implementation showed excellent 

performance in tracking a target response profile despite the 

uncertainty from multiple model characterizations.  These 

results were corroborated with in vitro experiments.  

However, the precision gained by using multiple prediction 

models came at the expense of computational efficiency.  

The computation time is approximately proportional to the 

number of models and iterations of the weight adaptation 

algorithm, with variability due to the complexity of the 

additional models and the modified objective space 

topography.  The proposed approach also does not 

incorporate new data in real time.  Unfortunately, the 

maximum feedback frequency afforded by current 

experimental protocols is insufficient to control the rapid 

dynamics of Erk signaling.  Open-loop control provides the 

only reasonable systematic means of manipulating Erk 

dynamics.  That said, one could easily modify the proposed 

approach to accommodate observational feedback should it 

be available. 

Future work will emphasize cost manifold identification 

for accurate and efficient solution to the multiple-model 

predictive control problem.  Incorporating parametric 

uncertainties will be streamlined to better inform the design 

of compromise solutions.  Next steps will also address multi-

output control to systematically manipulate the dynamics of 

more than one signaling species within a signaling pathway 

to allow for more sophisticated control strategies. 

The TCR Erk-MAPK signaling pathway studied herein is 

known to be associated with allergies, asthma, auto-immune 

disorders, and acute myeloid leukemia among others [16, 

17].  The ability to predictably alter the T-cell signal 

transduction dynamics, and thereby indirectly modify the 

transcription factor activation profile and gene regulatory 

networks, may ultimately have therapeutic applications. 
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