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Abstract—Human identification is an important task for
various activities in society. In this paper, we consider the
problem of human identification using eye movement informa-
tion. This problem, which is usually called the eye movement
identification problem, can be solved by training a multi-
class classification model to predict a person’s identity from
his or her eye movements. In this work, we propose using
Mel-frequency cepstral coefficients (MFCCs) to encode various
features for the classification model. Our experiments show
that using MFCCs to represent useful features such as eye
position, eye difference, and eye velocity would result in a
much better accuracy than using Fourier transform, cepstrum,
or raw representations. We also compare various classification
models for the task. From our experiments, linear-kernel SVMs
achieve the best accuracy with 93.56% and 91.08% accuracy on
the small and large datasets respectively. Besides, we conduct
experiments to study how the movements of each eye contribute
to the final classification accuracy.

Keywords-Biometric method, eye movement identification,
Mel-frequency cepstral coefficients

I. INTRODUCTION

Human identification is an important task for various ac-

tivities in society. With the development of technology, it is

now possible to record a person’s biometric information with

high quality and use this information for automatic human

identification. For instance, some popular biometric methods

that have been successfully used for human identification

include fingerprint verification [1], iris recognition [2], and

hand geometry verification [3].

The main disadvantage of the above traditional biometric

methods, as pointed out in [4], is that they are only based

on the physical characteristics of the human body. Such

biometric methods do not require a person to be conscious

during the identification process. Thus, the identification

systems can be tricked by using an unconscious person or

even a dead body. Moreover, a forger can technically prepare

models of a finger, a retina, or a hand of a person and use

them to bypass the identification systems.

In this paper, we consider a biometric method called eye
movement identification (EMI) that is based on both physical

and behavioral characteristics of a person and therefore can

overcome the above drawbacks of the traditional biometrics.

In this method, eye movements are used to identify people.

The idea of using eye movements to identify people has

been previously studied in [4]–[11]. According to [4], since

the eye movement biometric is based on both physical and

behavioral characteristics of a person, it requires the person

to be conscious during the identification process. Besides,

eye movements are also difficult to be forged because they

are produced mostly by a person’s brain, which is hard to

be imitated.

A common approach for EMI is the machine learning

approach. In this approach, we are given a training set of

eye movement recordings and their labels. The label of

one eye movement recording is the person that the eye

movement belongs to. Our task is to identify the labels of

the eye movement recordings in an unknown testing set.

For this problem, a typical method is to train a multi-class

classification model from the training set and use this model

to predict the labels of the examples in the testing set.

We propose using Mel-frequency cepstral coefficients

(MFCCs) [12] to encode various useful features for EMI.

The idea of MFCCs is to model various short and overlap-

ping signals obtained from applying a Hamming window

function to the eye position, eye difference, or eye velocity

signals. The use of MFCCs as features for EMI has many

advantages: (1) MFCCs can represent signals in a compact

and meaningful way, (2) MFCC features can be easily

computed from the data even if the user only has little

domain knowledge of EMI, and (3) classifiers with MFCC

features can achieve a good accuracy without the need

to build complex classification models. Although MFCCs

have been successfully used in many applications such as

speech recognition [13], music modeling [14], or emotion

recognition [15], to the best of our knowledge, they were

not previously explored as features for EMI.

In this work, we show how to extract the MFCC features

from the eye position, eye difference, or eye velocity signals

and use them to train a multi-class classifier for EMI.

We conduct an experiment to show that using MFCCs to

represent these useful features would result in a much better

accuracy than using raw representation or other previously

proposed representations such as cepstrum [4] and Fourier

transform [6]. To find a suitable model for EMI, we train

and compare the accuracy of four different models using the

MFCC features: decision tree [16], k-nearest neighbor [17],

Bayesian network [18], and support vector machine (SVM)
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[19]. The experimental result suggests that the linear-kernel

SVMs achieve the best accuracy with 93.56% and 91.08%

accuracy on the small and large datasets respectively.

We also study the effects of one-eye identification, in

which we use the features from only one eye for EMI. In

this study, we conduct an experiment to show how the move-

ments of each eye contribute to the classification accuracy.

This result is important because we may not be able to obtain

the movements of both eyes in real applications. Thus, if we

are to select only one eye for EMI, it is more preferable to

choose the eye that provides better classification accuracy.

II. RELATED WORKS

The first papers using eye movements for human identi-

fication are [4]–[6]. In [4], Kasprowski et al. propose the

jumping point stimulation experiment for recording the eye

movements of the participants. They extract the cepstrum

features from the eye movements and train one binary

classifier for each participant using the extracted features.

Their method can achieve an average error rate as low as

24% on a small dataset with nine participants.

In a following work [6], Kasprowski et al. also employ

the same jumping point stimulation method to record eye

movements. They convert each eye movement recording into

several vectors of attributes such as average velocity, eye dif-

ference, discrete Fourier transform of eye positions, etc. and

extract the features from these vectors by applying Principle

Components Analysis (PCA) [20]. For each participant, they

train several binary classifiers and use a voting algorithm to

make decisions for this particular person. The average error

rate of their method is about 16%.

In both papers [4] and [6], the authors do not attempt

to solve the EMI problem fully. Instead, they only try to

verify whether an eye movement recording belongs to a

given person. Thus, they do not specify how to combine

the trained binary classifiers to obtain a full classifier for

EMI. Our work, on the other hand, focuses on the EMI

problem and builds a single multi-class classifier for all

the participants using the MFCCs of eye movement, eye

difference, and eye velocity information.

In [5], Bednarik et al. use a different stimulation method

for recording eye movements. More specifically, their stimu-

lation consists of several tasks such as text reading, tracking

a moving or a static cross, and watching a static image. Since

the authors use a different eye tracker for recording, their

data also include the pupil diameters of the participants be-

sides the eye movements. They extract features by applying

Fourier transform and PCA on the data and train a k-nearest

neighbor classifier for EMI. Their method can achieve up to

90% accuracy using static features and up to 60% accuracy

using dynamic features.

Another work considers task-independent human authen-

tication using eye movements [7]. In this work, Kinnunen et

al. assume little or no prior knowledge about the stimulation

task. Their method uses the histograms of eye angles and

local velocity as features. Then, they model the eye move-

ments of each participant using Gaussian mixture model and

universal background model [21]. Their method can achieve

around 30% equal error rate on a dataset of 17 participants.

In [8], Holland et al. propose using eye movement scan-

paths in reading for human identification. The authors extract

various scanpath features from the fixation and saccades

computed from the eye movements. Then, they score the

similarity of these scanpath features and use the similarity

scores for identification. This method can achieve an equal

error rate as low as 27%. Besides scanpaths, oculomotor

plant mathematical models computed from eye movements

are also used for human identification [9], [10]. These

models are reported to achieve as low as 38% error rate.

EMI using graph matching techniques is also explored in

[11], which is reported to achieve about 30% equal error

rate.

Eye movements have also been studied in applications

other than human identification. For example, Cowen et al.

[22] use eye movements to analyze web-page usability. In

this paper, the authors study the relationships between eye

movements and users’ performance on various online tasks.

Eye movements are also used to provide information for the

visual mental imagery process [23]. In the paper, Johansson

et al. describe the experiments that present evidences about

the relationships between eye movements and the mental

images formed by the brain during visual mental imagery.

Besides, eye movements are also used in other fields such

as medicine and technology [24].

III. MATERIALS AND METHODS

In this section, we first give a short introduction to MFCCs

and the eye movement recording process. Then, we describe

in detail our approach for EMI.

A. Mel-Frequency Cepstral Coefficients

MFCCs are short-term spectral-based representations of

signals that have been successfully used in many appli-

cations such as speech recognition [13], music modeling

[14], or emotion recognition [15]. The main reason for

their success is that they can represent spectrum signals in

a compact form and thus can capture the most important

features of the signals [14]. In this paper, we show that

MFCCs are also useful for modeling eye movements and

they can be used to encode features for EMI classifiers.

MFCCs of a signal are computed by a sequence of steps

described in figure 1. Given an input discrete signal, we

divide the signal into overlapping frames by applying a

Hamming window function on the signal at fixed-length

overlapping intervals. We compute the MFCCs of the short-

term signal in each frame by first computing its discrete

Fourier transform and then take the magnitudes (or powers)

of the result. Next, we map the magnitudes obtained above
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Figure 1. Steps for computing MFCCs of a discrete signal.

onto the Mel scale using a Mel filter bank and take their

logarithm at each Mel frequency. Finally, we treat the Mel-

log magnitudes as a discrete signal and apply discrete Cosine

transform to obtain the MFCCs. The details of the whole

process are given in [12].

For each overlapping frame, we can also use the energy

and the derivatives of the MFCCs computed by the process

above as features [13]. For example, if the above process

generates 12 MFCCs for each overlapping frame, we can

add the energy term and the first derivatives to obtain a

total of 26 MFCCs for each frame. We can also adjust the

rate of applying the Hamming window function to control

the total number of overlapping frames for the whole signal.

B. The Eye Movement Recording Process

We now briefly describe the eye movement recording

process from which the experimental data are obtained. This

recording process was first used in [4]. Generally, the eye

movement recordings are obtained by using a jumping point
stimulation experiment. In the experiment, the participants

are required to look at a stimulus point on the screen. The

stimulus point changes its position at pre-specified time

steps during the experiment. There are totally nine possible

placements for the stimulus point on the screen, creating a

3 × 3 matrix. Figure 2 shows these nine possible positions

of the stimulus point.

At various time steps during an experiment, the eye

positions of the participants are recorded using an OBER2

eye tracker [25]. The timings are set so that the durations

between any two consecutive recording points are equal.

Thus, we can obtain the discrete eye positions of the

participants at equally separated time steps.

After the recording experiments, each example of the

final eye movement data contains: (1) the X-Y positions

Figure 2. Nine possible placements for the stimulus point during the
experiments.

of the stimulus points at equally separated time steps, (2)

the corresponding X-Y positions of the left eye at the same

time steps, and (3) the corresponding X-Y positions of the

right eye at the time steps. In the datasets used in this

paper, the whole recording session for one example contains

2,048 equally separated time steps, and we record the X-Y

positions of the stimulus point and the eyes at each time

step. A sample graph of the X positions of the stimulus

point and the left eye in one recording session are shown

in figure 3. In this work, we do not use the positions of the

stimulus point for EMI since they are almost the same for

all examples. So, we will ignore them in the later sections.

C. Eye Movement Identification

Our approach for EMI is to train a classifier on the

training data and use this classifier to predict the human

identity on the testing data. Unlike previous approaches

which train various binary classifiers for verification [4], [6],

we model EMI by a single multi-class classifier. This choice

of modeling has many advantages: (1) we can easily utilize

the known methods for multi-class classification problem

and use their implementations without concerning about the

details; (2) we do not need to explicitly maintain many

binary classifiers and manually combine them; and (3) we

also do not need to process the data into many training sets

to facilitate the training of the binary classifiers. The idea

of using multi-class classifiers for EMI was also employed

in [5].

To train a good multi-class classifier, we need to com-

pute the useful information from the eye movement signals

described in section III-B and encode them as features for

the classifier. Previous works have shown that information

such as eye position, eye difference, and eye velocity can

be useful for EMI [4]–[6]. Thus, we use these information

to compute the features for our classifier. However, our eye

velocity is different from the average eye velocity proposed

in [6]. Specifically, we compute the instant eye velocity

and treat it as a signal rather than compute its average.

In our opinion, a signal of instant eye velocity gives more

information about the dynamics of the eye movement than
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Figure 3. The X positions of the stimulus point and the left eye in one recording session (approximately 8 seconds). The stimulus point changes its
positions 9 times during the recording session. After each change, the left eye also adjusts its positions accordingly.

a single eye velocity average. In section III-C1, we describe

in detail how to compute the useful information from the

eye movement signals.

After obtaining the useful information from the eye

movement signals, we need to encode them as features for

the classifier. In this work, we propose using MFCCs to

represent the information and use them as features. In section

III-C2, we describe how to compute the MFCCs features and

use them for our classifier.
1) Useful information for eye movement identification:

Each eye movement recording described in section III-B

contains the eye positions of a person at equally separated

time steps during a recording session. More specifically, each

eye movement recording contains four vectors lx, ly, rx, ry
which are the X positions of the left eye, the Y positions

of the left eye, the X position of the right eye, and the Y

position of the right eye respectively. Let

lx = (lx1, lx2, . . . , lxn)

ly = (ly1, ly2, . . . , lyn)

rx = (rx1, rx2, . . . , rxn)

ry = (ry1, ry2, . . . , ryn)

where n is the number of recording points in a recording

session. It is important to note that we can treat the above

vectors as discrete time-series signals. We now describe

how to compute the useful information for EMI from these

signals.

• Eye position (EPos): Eye position simply consists of the

four vectors lx, ly, rx, ry themselves. This is the sim-

plest type of information that can be readily obtained

from each record without any processing. This type of

information was used for EMI in [4].

• Eye difference (EDiff): Eye difference is the difference

in X positions and Y positions between the left eye

and the right eye. This type of information was used

for EMI in [5] and [6]. More specifically, we compute

two vectors XDiff and YDiff . The vector XDiff is

the difference in X positions between the eyes and the

vector YDiff is the difference in Y positions between

the eyes. Formally, these two vectors are computed as

follows

XDiff = (lx1 − rx1, lx2 − rx2, . . . , lxn − rxn)

YDiff = (ly1 − ry1, ly2 − ry2, . . . , lyn − ryn)

• Eye velocity (EVel): Eye velocity is the instant velocity

vectors of the X positions and the Y positions of

the eyes. More specifically, we compute four vectors

LXVel, LYVel, RXVel, and RYVel, in which

LXVel and LYVel are the velocity vectors of the

left eye in X and Y directions respectively, while

RXVel and RYVel are the velocity vectors of the

right eye in X and Y directions respectively. This type

of information is different from the average velocity

used in [6]. Formally, we compute these four vectors

as follows

LXVel = (lx2 − lx1, lx3 − lx2, . . . , lxn − lxn−1)

LYVel = (ly2 − ly1, ly3 − ly2, . . . , lyn − lyn−1)

RXVel = (rx2 − rx1, rx3 − rx2, . . . , rxn − rxn−1)

RYVel = (ry2 − ry1, ry3 − ry2, . . . , ryn − ryn−1)

2) Training the classifier with MFCC features: After

obtaining the vectors of eye position, eye difference, and

eye velocity information as in section III-C1, we compute

the MFCC features for the classifier from these vectors. The

computation can be done by treating these vectors as discrete

time-series signals and applying the process described in

section III-A to compute the MFCCs of the signals. For
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Table I
THE TRAINING SET SIZE, THE TESTING SET SIZE, AND THE NUMBER OF

CLASSES FOR THE TWO DATASETS IN THE EXPERIMENTS.

DATASET TRAINING TESTING CLASSES

A 652 326 48

B 2,778 1,390 79

eye position and eye difference signals, we use the MFCCs

and their energy as features. For eye velocity signals, we

use the MFCCs, their energy, and their first derivatives

as features for our classifier. With these features, we can

train a multi-class classifier for EMI. Note that we do not

include the MFCCs’ derivatives of the eye position and

eye difference signals as features because they do not help

increase the classification accuracy. There are many multi-

class classification models that can be used. In this work,

we focus on four well-known models: decision tree [16],

k-nearest neighbor [17], Bayesian network [18], and multi-

class SVM [19].

IV. EXPERIMENTS

In this section, we describe various experiments to test

our method and discuss the results of these experiments. The

first experiment is used to test the usefulness of the MFCC

features. In the second experiment, we compare different

classification models for EMI using the MFCC features. In

the last experiment, we compare the performance of the

classifiers trained using only the features from left or right

eye with the classifier trained using features from both eyes.

For the experiments, we use the first two datasets obtained

from the Eye Movement Verification and Identification Com-

petition (EMVIC 2012)1. The statistics of the datasets are

given in table I. Dataset A contains 652 training examples

and 326 testing examples with a total of 48 different

classes. Dataset B is a more difficult dataset which contains

2,778 training examples and 1,390 testing examples with 79

classes. The main measurement used in the experiments is

the accuracy of the classifiers, which is the percentage of

the correct predictions on the testing set.

A. The usefulness of MFCC features

1) Experiment settings: In this experiment, we train a

classifier using MFCC features and compare it with three

other baselines. Each of the baselines represents a different

encoding method for the information obtained in section

III-C1. The baselines that we use to compare with our

method are:

• RAW: This baseline uses all the raw vectors obtained

in section III-C1 as features without any processing.

This is the simplest baseline for EMI.

1http://www.emvic.org/

Table II
NUMBER OF FEATURES IN AN EXAMPLE FOR EACH TYPE OF

INFORMATION WITH RESPECT TO RAW, FT, CEPS, AND MFCC
ENCODING METHOD.

FEATURES RAW FT CEPS MFCC

EPos 8,192 8,192 800 1,612

EDiff 4,096 4,096 400 390

EVel 8,188 8,188 800 1,456

• FT: In this baseline, we treat the vectors obtained in

section III-C1 as discrete time-series signals and com-

pute their Fourier transforms. Then, we use the resulting

sequences as features for our training classifier. The

idea of using Fourier transform for EMI was used in

[5] and [6].

• CEPS: For this baseline, we treat the vectors in section

III-C1 as discrete time-series signals and compute their

cepstrum, which is a sequence of cepstral coefficients.

Note that these cepstral coefficients are different from

the MFCCs. The cepstral coefficients of a signal are

computed by determining the logarithm of the mag-

nitude of the Fourier transform of x, then applying

inverse Fourier transform on the resulting sequence. In

this baseline, we use the first M coefficients of each

signal as features for the classifier. The idea of using

the first M cepstral coefficients as features is common

in speech processing [12]. This idea was first applied

for EMI in [4]. In our experiment, we fix M = 200
since this value of M gives the best accuracy for the

classifiers.

In table II, we give the number of features for each type of

information with respect to the encoding methods. RAW and

FT have the same number of features for all the information

types, while CEPS has the least number of features. For our

MFCC method, we adjust the rate of applying the Hamming

window function so that the number of features is moderate,

as shown in table II.

In this experiment, we consistently use the multi-class

linear-kernel SVMs (with parameter C = 100) for all

the classifiers. The SVM classifiers are trained by using

libSVM library [26]. We can also obtain similar results with

other models such as decision tree, k-nearest neighbor, or

Bayesian network. However, the accuracy of these models is

lower than that of SVMs. We use MATLAB [27] to compute

the Fourier transform and the cepstrum of signals. For the

MFCC features, we use the VOICEBOX toolbox [28] in our

implementation.

2) Results: The results of the experiments on dataset A

and B are given in tables III and IV respectively. With

only eye position features, our MFCC method has already

achieved 91.41% accuracy on dataset A and 85.25% on

dataset B. Adding eye difference features improves the
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Table III
THE ACCURACY (%) OF THE RAW, FT, CEPS, AND MFCC

CLASSIFIERS WITH DIFFERENT SETS OF FEATURES ON DATASET A.

FEATURES RAW FT CEPS MFCC

EPos 80.67 78.83 65.64 91.41

EPos+EDiff 82.52 80.06 65.64 93.25

EPos+Evel 81.60 78.53 73.01 93.56

EPos+EDiff+EVel 82.52 80.06 71.78 93.56

Table IV
THE ACCURACY (%) OF THE RAW, FT, CEPS, AND MFCC

CLASSIFIERS WITH DIFFERENT SETS OF FEATURES ON DATASET B.

FEATURES RAW FT CEPS MFCC

EPos 71.37 63.31 50.65 85.25

EPos+EDiff 69.86 62.16 53.24 87.77

EPos+Evel 71.30 63.45 62.01 90.43

EPos+EDiff+EVel 69.78 62.01 62.01 91.08

accuracy of our method by approximately 2% on both

datasets, while adding eye velocity features improves the

accuracy of our method to 93.56% and 90.43% on datasets

A and B respectively. Overall, our MFCC method with all

the features can achieve 93.56% accuracy on dataset A and

91.08% accuracy on dataset B.

On dataset A, the RAW and FT baselines achieve the best

accuracy with EPos and EDiff features, while the CEPS

baseline achieves the best accuracy with EPos and Evel

features. For dataset B, the RAW baseline achieves the best

accuracy with only EPos features, while the FT and CEPS

baselines achieve the best accuracy with EPos and Evel

features. Our MFCC method can achieve a good accuracy

using only EPos and Evel features. Further adding EDiff

features can help to improve the accuracy of our method on

dataset B slightly.

Among the three baselines, RAW achieves the best ac-

curacy, while CEPS performs worse than the other two

baselines. The accuracy of CEPS using only EPos features is

consistent with the results reported in [4]. On both datasets,

our method outperforms all the baselines significantly. On

dataset A, the MFCC method performs better than the best

baseline by more than 10%. While on dataset B, it performs

better than the best baseline by more than 13%.

Thus, we can see from the results that MFCC features

are much better than Fourier transform, cepstrum, or raw

features for EMI. The experiment also shows that Fourier

transform and cepstrum features are not good for multi-class

eye movement classifiers since they perform worse than even

the raw features.

B. Comparisons of different models

In this experiment, we evaluate and compare the accuracy

of different multi-class classification models to determine

the most suitable model for the EMI problem. In particular,

we train and compare four models: decision tree (J48),

k-nearest neighbor (kNN), Bayesian network (BayesNet),

and Support Vector Machine (SVM). These models have

been successfully used in many classification problems. We

use all the EPos, EDiff, and EVel features (with MFCC

representation) to train the models in the experiment.

We use the implementations of J48, kNN, and BayesNet

in Weka 3.6 [29] and the implementation of SVM in libSVM

[26]. For J48, we choose the confidence factor C = 0.25 and

the minimum number of objects in the leaf nodes M = 2.

For kNN, we choose k = 3, following the discussions in

[4]. For BayesNet, we use a simple estimator for estimating

the conditional probability tables once the structure has been

learned [18]. For the search algorithm in BayesNet, we use

the K2 hill climbing algorithm [30]. The parameters for

SVM classifiers are the same as in section IV-A.

Figure 4 shows the performance of the four models on

datasets A and B. On both datasets, SVM classifiers achieve

the best accuracy compared to J48, kNN, and BayesNet clas-

sifiers. BayesNet performs reasonably (about 85% accuracy)

on dataset A but performs poorly (about 60% accuracy) on

dataset B. On the other hand, J48 performs poorly on both

datasets with only about 55% accuracy on dataset A and

30% accuracy on dataset B. The performance of kNN is

moderate with about 80% accuracy on both datasets.

By comparing the accuracy of the classifiers on dataset A

and dataset B, we see that the effect of increasing the number

of labels is more severe for J48 and BayesNet than for kNN

and SVM. For J48 and BayesNet classifiers, their accuracy

on dataset B is lower than their accuracy on dataset A by

more than 20%. In contrast, for kNN and SVM classifiers,

the accuracy on dataset B is only slightly lower than the

accuracy on dataset A.

The results from this experiment suggest that support

vector machine is more suitable for EMI than decision tree,

k-nearest neighbor, or Bayesian network. In practice, we

may use cross-validation to select the best model among

all the possible models and parameter settings for the task.

C. One-eye classification

In this experiment, we study the effects of one-eye

classification. Specifically, we compare the accuracy of the

classifiers trained using features from only left or right eye

with the classifier trained using features from both eyes.

This experiment is useful for us to understand how much the

information from each eye contributes to the classification

accuracy and which eye is dominant for identification.

The result from this experiment is useful for the limited

resource settings where we can only use the movements

of one eye for human identification. Such situations may
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Figure 4. The accuracy of the decision tree (J48), k-nearest neighbor
(kNN), Bayesian network (BAYESNET), and support vector machine
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Figure 5. The accuracy of the SVM classifiers on datasets A and B using
features from left eye, right eye, and both eyes.

happen if the eye tracker can only record the movements of

one eye instead of two eyes as in the experiments in sections

IV-A and IV-B. In these cases, we may need to decide which

eye to use for classification.

Since we assume that we only know the movements of

either left eye or right eye but not both, we can only use

the EPos and EVel features in this experiment. We use the

MFCC representation of these features and SVM model to

train the classifiers. There are a total of 3,068 features from

both eyes, in which each eye contributes 1,534 features. The

parameters of the SVMs are the same as in sections IV-A

and IV-B.

The results for this experiment on dataset A and B are

shown in figure 5. From the result, using left eye for EMI

is significantly better than using right eye. This result is

somewhat consistent with [31], in which the authors use the

OBER2 eye tracker calibration to recognize the dominant

eye. For both datasets, using features from both eyes for

classification can achieve better accuracy than using features

from only one eye.

V. DISCUSSIONS

In our experiments, one reason for MFCC features to

perform better than RAW and FT features is that the number

of RAW and FT features is much larger than the number of

MFCC features. Thus, it is hard to learn a good model with

that many features considering the size and the number of

classes of the datasets. Another reason why RAW features

perform worse than MFCC features is that RAW features

cannot filter out the noise in the signals. MFCC features, on

the other hand, can represent the signals in a more compact

way and therefore can filter out the noise in the signals.

An important advantage of MFCC features compared to

the baselines is that the MFCC features can model short-

term signals by applying the Hamming window function

at overlapping intervals and computing the MFCCs of the

short-term signals within the intervals. This is a better way

to encode the information in a signal than using the Fourier

transform or the cepstrum of the whole long-term signals.

In comparison with previous approaches, our MFCC

method can achieve a comparable accuracy with one of the

best reported results [5] for EMI. In that model, an accuracy

of up to 90% can be obtained if we assume that only eye

movements are given in the data (i.e. we exclude the pupil

diameter information). However, in their work, the authors

use a different stimulation method from ours to record the

eye movements.

In terms of model complexity, our model is much simpler

than the previous approaches in [4], [6]. For example, in

[4], one binary classifier is trained for each person. Thus, the

number of models required is equal to the number of people

to be identified. In [6], 264 binary classifiers are trained and

the best 72 classifiers are combined using a voting algorithm.

Our method, on the other hand, only needs to train one single

multi-class classifier.

Our method also does not require much domain knowl-

edge about EMI as in [9], [10]. In these works, the models

need to compute various oculomotor plant characteristics

and use them to build a complex model. This task requires a

lot of domain knowledge about EMI. In contrast, out method

only needs to compute some simple information such as eye

difference or eye velocity and uses their MFCCs as features.

VI. CONCLUSIONS

In this paper, we have introduced the use of MFCCs

to encode features such as eye position, eye difference,

and eye velocity for EMI. We show that using MFCCs to

represent these features is significantly better than using the

raw representation or other representations such as cepstrum

and Fourier transform. We also show that using cepstrum or

Fourier transform to model long-term eye movement signals

is not useful for EMI. Besides, we give the performance of

four different models trained with the MFCC features on

two datasets. Among these models, linear-kernel SVMs can

achieve a very high accuracy. This result suggests that using

linear-kernel SVMs with MFCC features is a good choice

for the EMI problem. We also study the effects of using one-

eye features for identification. The study shows that using
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left-eye features is better than using right-eye features for

human identification.
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