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Abstract8

Maximum likelihood estimation in phylogenetics requires a means9

of handling unknown ancestral states. Classical maximum likelihood10

averages over these unknown intermediate states, leading to consis-11

tent estimation of the topology and continuous model parameters.12

Recently, a computationally-efficient approach has been proposed to13

jointly maximize over these unknown states and phylogenetic param-14

eters. Although this method of joint maximum likelihood estimation15

can obtain estimates more quickly, its properties as an estimator are16

not yet clear. We show that this method of jointly estimating phyloge-17

netic parameters along with ancestral states is not consistent in gen-18

eral. We find a set of parameters that generate data under a four-taxon19

tree for which this joint method estimates a multifurcating topology20

in the limit of infinite-length sequences by estimating one or more21

branches to be zero length. For branch length estimation on the cor-22

rect topology, we show that this joint method cannot estimate consis-23

tent branch lengths except in degenerate cases, and we provide exten-24

sive empirical results for outlining the consistent bias in this setting.25
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Introduction26

Classical maximum likelihood (ML) estimation in phylogenetics operates27

by integrating out latent ancestral states at the internal nodes of the tree,28

obtaining an integrated likelihood [Goldman, 1990]. In a recent paper, Sag-29

ulenko et al. [2018] suggest using an approximation to ML inference in30

which the likelihood is maximized jointly across model parameters and31

ancestral sequences on a fixed topology. This is attractive from a computa-32

tional perspective: such joint inference can proceed according to an itera-33

tive procedure in which ancestral sequences are first estimated and model34

parameters are optimized conditional on these estimates. This latter con-35

ditional optimization is simpler and more computationally efficient than36

optimizing the integrated likelihood. But is it statistically consistent?37

An estimator is said to be statistically consistent if it converges to the38

generating model with probability one in the large-data limit; existing con-39

sistency proofs for maximum likelihood phylogenetics [Allman et al., 2008,40

Chai and Housworth, 2011, RoyChoudhury et al., 2015] apply only to es-41

timating model parameters when the ancestral sequences have been inte-42

grated out of the likelihood. These proofs do not readily extend to include43

estimating ancestral states. Moreover, examples of inconsistency arising44

from problems where the number of parameters increases with the amount45

of data [Neyman and Scott, 1948] indicate that joint inference of trees and46

ancestral states may not enjoy good statistical properties. In this case those47

additional parameters are the states of ancestral sequences. Although Sag-48

ulenko et al. [2018] explicitly warn that the approximation is for the case49

where “branch lengths are short and only a minority of sites change on a50

given branch,” their work motivates understanding the general properties51

of such joint inference. In particular, one would like to know when this52

approximate technique breaks down for both topology and branch length53

inference, even when sequence data is “perfect,” i.e., is generated without54

sampling error according to the exact model used for inference.55

In this paper, we show that jointly inferring trees and ancestral sequences56

is not consistent in general. To do so, we use a binary symmetric model57
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with data generated on a four-taxon tree: we compute closed form solu-58

tions to the joint objective function and demarcate a sizeable area of branch59

lengths in which joint inference is guaranteed to give a multifurcating tree60

in the case of perfect sequence data with an infinite number of sites by es-61

timating one or more branch lengths to be zero. We show that, when the62

topology is known and fixed, joint inference cannot be consistent except in63

cases of zero or infinite branch length, and we find similar areas through64

empirical means where joint inference consistently underestimates interior65

branch lengths.66

Phylogenetic maximum likelihood67

Assume the binary symmetric model, namely with a character alphabet68

A = {0, 1} and a uniform stationary distribution [Semple and Steel, 2003].69

Letm be the number of tips of the tree, and p = m−2 be the number of inter-70

nal nodes. We observe n independent and identically distributed samples71

of character data, i.e., an alignment with n columns, Y = [y1, . . . ,yn] ∈72

Am×n distributed as the random variable Y . The corresponding unob-73

served ancestral states are H = [h1, . . . ,hn] ∈ Ap×n and distributed as74

H with each hi ∈ Ap.75

We parameterize branches on the unique unrooted four-tip phyloge-76

netic tree in ways known as the “inverse Felsenstein (InvFels)” tree (Figs. 1a77

and 1b) and the “Felsenstein” tree (Fig. 1c). The “inverse Felsenstein” ter-78

minology comes from Swofford et al. [2001], although it is also called the79

“Farris” tree [Siddall, 1998, Felsenstein, 2004]. In the standard configura-80

tion of this tree, the interior branch parameters are equal to the bottom two81

parameters as in Fig. 1a. We use this standard configuration as our data82

generating process, though we do not constrain our branch parameters to83

be equal when optimizing our objective function.84

We parameterize the branches of these trees not with the standard no-85

tion of branch length in terms of number of substitutions per site, but with86

an alternate formulation called “fidelity.” The probability of a substitution87

on a branch with fidelity x is (1−x)/2, while the probability of no substitu-88
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Figure 1: Three four-taxon trees with fidelities as labeled.

tion is (1 + x)/2 where 0 ≤ x ≤ 1. This parameter quantifies the fidelity of89

transmission of the ancestral state across an edge [Matsen and Steel, 2007].90

Fidelities have useful algebraic properties. As data becomes plentiful,91

we use the Hadamard transform (see (8) in the Appendix) to compute the92

exact probabilities that generate each particular configuration of taxa—we93

call these “generating probabilities”—and these have an especially simple94

form. For a four-taxon tree, define the general branch fidelity parameter95

t = {x1, y1, x2, y2, w} where fidelities are ordered in the order of the taxa96

with the internal branch last (Figs. 1b and 1c). Although we use fidelities97

exclusively for our theoretical development, we have made our figures in98

terms of probabilities of substitution px = (1 − x)/2 as they are easier to99

interpret.100

Two paths to maximum likelihood101

The standard phylogenetic likelihood approach on unrooted trees under102

the usual assumption of independence between sites is as follows. For a103

topology τ and branch fidelities t the likelihood given observed ancestral104

states H is105

Ln(τ, t;Y,H) =

n∏
i=1

Pr(Y = yi, H = hi | τ, t). (1)

The probability Pr(Y = yi, H = hi | τ, t) is a product of transition proba-106

bilities determined by Y, H, τ , and t [Felsenstein, 2004].107
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The classical approach is to maximize the likelihood marginalized across108

ancestral states109

L̃n(τ, t;Y) =
n∏
i=1

∑
hi∈Ap

Pr(Y = yi, H = hi | τ, t) (2)

to estimate the tree τ and branch fidelities t.110

The alternative approach [Sagulenko et al., 2018] does away with the111

marginalization and directly estimates the maximum likelihood parame-112

ters of the fully-observed likelihood in (1). This is known in statistics as a113

profile likelihood [Murphy and van der Vaart, 2000] or a relative likelihood114

[Goldman, 1990], which exists here because A is a finite set:115

L′n(τ, t;Y) =
n∏
i=1

max
hi∈Ap

Pr(Y = yi, H = hi | τ, t) = max
H∈Ap×n

Ln(τ, t;Y,H).

(3)
We use Ĥn to denote an estimate for H obtained by maximizing (3), and116

estimate a topology and branch fidelities using this profile likelihood as117

(τ̂n, t̂n) = argmax
τ,t

L′n(τ, t;Y). (4)

In general, the functional form of (3) is determined by inequalities arising118

from taking maxima over ancestral states (Table S2) to obtain each condi-119

tional likelihood term, these terms depending on the unknown (τ, t). For120

this reason, in practice, the joint inference strategy estimates Ĥn for a fixed121

(τ, t), then (τ̂n, t̂n) given Ĥn, maximizing each of these conditional objec-122

tives until convergence [Sagulenko et al., 2018].123

Inconsistency of joint inference124

We now state our results on the inconsistency of joint inference. All proofs125

are deferred to the Appendix.126

Assume Y is generated from the InvFels topology τ∗ (Fig. 1a) and with127

true generating branch fidelities t∗ = {x∗, y∗, x∗, y∗, y∗}. Let ξ = [ξj ]
q
j=1 be128
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the vector of most likely ancestral state splits—the explicit definition for ξ129

is given in the Appendix. Use `τ∗,t∗(τ, t; ξ) to denote the expected per-site130

log-likelihood, which can be thought of as the infinite-length sequence case131

because, as shown in the Appendix,132

1

n
logL′n(τ, t;Y)→ `τ∗,t∗(τ, t; ξ). (5)

We give ` explicitly as (7) in the Appendix. For a fixed τ , let t̂n maximize133

the left-hand side of (5) and t̂ maximize the right-hand side. We show in134

the Appendix that t̂n → t̂, allowing us to focus on only the right-hand side135

above.136

Inconsistent branch length estimation137

When the topology is known and fixed and we estimate only branch lengths,138

we show the following, i.e., that for all x∗ and y∗ in (0, 1) any branch length139

estimate is consistently biased.140

Theorem 1. Let τ∗ = τ1, t∗ = {x∗, y∗, x∗, y∗, y∗}, and t = {x1, y1, x2, y2, w}141

with x1, y1, x2, y2, w > 0. For all 0 < x∗, y∗ < 1, the solution t̂ := {x̂1, ŷ1, x̂2, ŷ2, ŵ}142

given by143

t̂ = arg max
t

max
ξ

`τ∗,t∗(τ1, t; ξ)

has the property t̂ 6= t∗.144

In words, the joint estimation procedure never recovers the true gener-145

ating t∗ except in cases of zero or infinite branch length. This is apparent146

given Table S1, as the solution t̂ is a linear combination of pỹj values, and147

no generating probability contains an x∗ or y∗ term.148

Convergence to degenerate topology149

Given data generated on τ1 there exist true nonzero branch lengths such150

that the estimator t̂ maximizing the right-hand side of (5) has an internal151

branch of length zero.152
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Theorem 2. Let τ∗ = τ1, t∗ = {x∗, y∗, x∗, y∗, y∗}, and t = {x1, y1, x2, y2, w}153

with x1, y1, x2, y2, w > 0. There exists an open set of 0 < x∗, y∗ < 1 such that154

the solution t̂ := {x̂1, ŷ1, x̂2, ŷ2, ŵ} given by155

t̂ = arg max
t

max
ξ

`τ∗,t∗(τ1, t; ξ)

has the property ŵ ≡ 1.156

This result implies an inconsistency as we estimate the interior branch157

length to be zero (i.e., interior branch fidelity is one) in an open set of val-158

ues for x∗ and y∗ (Fig. S2). As we consider different topologies τ1 and τ2159

for t̂, the incorrect topology τ2 attains a likelihood value at its maximum160

equal to that of the true topology τ1 in the limit. In other words, if w = 1161

the objective functions `τ∗,t∗(τ1, t; ξ) and `τ∗,t∗(τ2, t; ξ) are equivalent. We162

elaborate on this point in the Appendix. The proof is through analytically163

reducing the general case to 81 separate cases (Table S3) to obtain a closed164

form maximal value for each.165

We provide the following as an intuition for the theoretical develop-166

ment. For a particular site pattern, to obtain the joint maximum likelihood167

function we maximize over ancestral states. For the internal branch—the168

branch between the two internal nodes—we have a choice of (1 + w) or169

(1−w) in each of our likelihood terms depending on which ancestral state170

corresponds to the highest conditional log-likelihood. As (1+w) > (1−w),171

a maximization procedure tends to prefer the (1 + w) term, though this is172

not guaranteed because the maximum depends on the values of the un-173

known branch parameters t. Nevertheless, this tendency to include (1 +w)174

terms in the likelihood results in a positive bias of branch fidelities, i.e., es-175

timating branch lengths to be shorter than truth. This is apparent in the176

“long x∗, short y∗” scenario as these are the cases in which the most likely177

ancestral states are the same for each internal node letting x1 = x2 = x∗178

and y1 = y2 = y∗ (ξj = ∅ for all j in Table S3). If we allow multifurcating179

trees in our inference, then we can think of this as an instance of converging180

to the wrong topology, as the true y∗ 6= 1.181
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Figure 2: Estimates for p̂w = (1− ŵ)/2 when optimizing (3), where the true
value for pw is py∗ . Data generated as in Fig. S2. The white region in the
lower right highlights which values of x∗ and y∗ result in an interior branch
being estimated as length zero, resulting in an inconsistency.

Empirical validation182

Direct numerical optimization confirms our theoretically-derived bounds183

and provides a more detailed picture compared to the analytically-derived184

region (Fig. S2). To verify the regions of inconsistency and obtain a clearer185

picture of the closed form parameter estimates, we plot the optimal ŵ via186

joint estimation (Fig. 2). As before, the region of inconsistency encompasses187

almost half of the branch fidelity space; given the correct topology, there are188

many situations where we estimate the interior branch length to be zero.189

In our optimization procedure, we again consider the 81 separate cases190

(Table S3) and, for each function, we compute the closed form solution for191

t̂. We compute these maxima over a lattice in steps of 10−2 for x∗, y∗ ∈192

(0, 1). Our optimization code can be found at https://github.com/193
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matsengrp/joint-inf/.194

In estimating the interior branch length w, we find a systematic bias in195

the joint inference procedure even when the true branches are short (Fig. 3).196

As data are generated with parameters {x∗, y∗, x∗, y∗, y∗}, the true value197

for w is y∗. There are discontinuities in the fit (Fig. 2) due to the choice of198

which ancestral state splits are maximal, so we investigate the bias in the199

region where px∗ and py∗ are both small, i.e., px∗ , py∗ ≤ .1, as these short-200

branch cases should be the best settings for joint optimization [Sagulenko201

et al., 2018]. Although the estimates for p̂w are better than the estimates202

when py∗ is small and px∗ is large (Fig. 2), joint inference still predictably203

underestimates the interior branch length. Additionally, the bias estimates204

p̂w − py∗ given px∗ , py∗ ≤ .1 range from [−4× 10−2, 3× 10−3].205

Inference on the integrated likelihood performs as expected where ŵ is206

equal to y∗ regardless of the value of x∗ (Fig. S3). We use L-BFGS-B when207

optimizing (2). The errors in this case are lower than machine tolerance208

showing that, even in cases where joint inference is supposed to do well, it209

still fails to achieve a low error from truth.210

Discussion211

We have shown that jointly inferring ancestral states and phylogenetic pa-212

rameters [Sagulenko et al., 2018] is not consistent in general. Specifically,213

in the case of four-taxon trees with infinite data, we have obtained nontriv-214

ial regions of generating parameters that result in a type of topological in-215

consistency: the joint inference procedure estimates zero-length branches,216

which can be considered as a multifurcating topology. Also, the incorrect217

topology attains the same likelihood as the topology that generated the218

data by fixing this branch to have zero length. Since the parameters with219

the highest likelihood given the generating topology include a zero-length220

branch, we cannot exclude the possibility that the incorrect topology with221

this branch having nonzero length is more likely to be observed, though222

we have not found regions where this is the case. The regions of inconsis-223

tency we found arise when the top two branches of the generating trees are224
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Figure 3: Bias in branch length estimation. Even in regions with short
branch length (px∗ , py∗ ≤ .1) where joint optimization should perform well,
there is systematic bias toward shorter branch lengths.
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“long,” that is, when the top branch fidelities tend to be small, and when225

the lower branches are “short,” i.e., have large fidelities. We see that this226

inconsistency occurs even if some branches are short. This expands on the227

empirical findings of poor estimation given long branches in Sagulenko228

et al. [2018] (their Figures 2 and 3). However, the problems are not just229

for long branches as Sagulenko et al. [2018] imply: even when all branches230

are short there is a consistent bias, and the bias is on the same order as the231

magnitude of the parameters (Fig. 3). In addition, we have shown there232

are no nontrivial generating parameters that yield consistent branch length233

estimates.234

Joint inference of tree parameters and ancestral sequences is a type of235

profile likelihood, a well-studied subject in statistics [Murphy and van der236

Vaart, 2000]. Many properties regarding the performance of maximum237

likelihood estimates obtained using this approach are known, and many238

methods exist to overcome their undesirable properties, e.g., the method of239

sieves [Geman and Hwang, 1982]. A potential solution in this case using240

the method of sieves could be to project the column-wise ancestral states241

into a lower-dimensional space, allowing the degrees of freedom in the an-242

cestral state columns to grow with n, albeit more slowly than O(n). Else-243

where in statistics literature, the failure of maximum likelihood estimates244

to obtain consistent estimates as the number of parameters goes to infinity245

have been shown by the Neyman-Scott paradox [Neyman and Scott, 1948],246

though parameters tending to infinity is not a necessary condition for in-247

consistency [Le Cam, 1990]. Consistency proofs of standard maximum like-248

lihood estimates of phylogeny (2) are recent [Allman et al., 2008, Chai and249

Housworth, 2011, RoyChoudhury et al., 2015], and no results have been ob-250

tained for profile likelihood. We have furthered progress in understanding251

the limitations of this joint optimization procedure.252

Previous work in phylogenetics has developed consistency counterex-253

amples using similar four-taxon topologies to the one used here [Felsen-254

stein, 1978]. In this previous work, when simulating data under the Felsen-255

stein topology τ2, as the number of observations increases, the InvFels topol-256

ogy τ1 becomes more likely when performing a particular estimation pro-257
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cedure. We have shown cases in which, when generating from the In-258

vFels topology, we converge to a multifurcating topology, with one or more259

branch lengths estimated to be zero. Moreover, the inconsistency demon-260

strated by Felsenstein [1978] is attributed to long branch attraction, i.e., the261

fact that there may be multiple long branches where parallel changes are262

more likely than a single change along a short branch. This is not the263

case here; while analytically the inconsistency occurs when the top two264

branches are long and the bottom three are short, we see empirically that265

this inconsistency is present in roughly half of the entire parameter space,266

and occurs when the true branches generate data that more likely has no267

change along the interior branch. Additionally, we generate data on the In-268

vFels tree τ1 while Felsenstein [1978] generates data on the Felsenstein tree269

τ2. Difficulties in phylogenetic estimation when generating data on the In-270

vFels tree have been found by Siddall [1998], though Swofford et al. [2001]271

show that sequence length plays a major role in these issues.272

The case of joint inference of a phylogenetic likelihood is discussed in273

Goldman [1990]. There, Goldman provides a worked example in which es-274

timating a topology with fixed branch lengths is equivalent to parsimony275

and thus not guaranteed to be consistent, though he does not discuss the in-276

consistency of joint inference in general. We show cases where the incorrect277

topology attains an equal likelihood value at the maximum as the correct278

topology, and, moreover, if we know the correct topology, we show cases279

where branch lengths are severely biased and cannot be consistent. Finally,280

just prior to his conclusion, he discusses when parsimony gives the same281

answer as maximum likelihood, concluding that the question is ill-posed282

since parsimony estimates different parameters than maximum likelihood,283

i.e., it assumes equal branch lengths. We render the question well-posed:284

the joint inference procedure outlined here estimates the same parameters285

as classical maximum likelihood—topology and branch lengths—albeit im-286

plicitly estimating ancestral states as well. We are able to provide much287

more detail on how large branch lengths must be for general joint inference288

to fail to be consistent.289

We have shown an inconsistency when performing joint inference on290
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branch lengths given an InvFels topology and investigated the performance291

of branch parameter estimation. There is substantial scope for future work292

to make these results more precise and more general. All of these results293

hold only for a simple binary symmetric model on four-taxon trees, and294

extensive simulation is necessary to understand how these results extend295

to more complicated general cases, such as applied examples with larger296

trees or more realistic mutation models that are of interest to practition-297

ers. Also, given that many of the bounds presented here are in the form of298

level sets of multivariate polynomials, a more formal approach using alge-299

braic geometric techniques may reveal more stable or interesting patterns300

of inconsistency; see Sturmfels [2002] for a thorough treatment of solving301

systems of polynomial equations. Finally, all of the material presented here302

concerns joint estimation under maximum likelihood, and does not pose303

any problem for other settings, such as joint sampling of trees and ances-304

tral sequences in a Bayesian framework.305
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Appendix382

Site split formulation383

We begin by introducing “site splits.” We use site splits to formalize the384

notion that a given site pattern is equally probable to its complement under385

the binary symmetric model. This is a standard step in the description of386

the Hadamard transform (Section 8.6 of Semple and Steel [2003]), although387

our approach is complicated slightly by the inclusion of ancestral states.388

Since we have a finite character alphabet, for a given column i there are389

a finite number of possible assignments of characters to tips yi or internal390

nodes hi. For the binary symmetric model, the alphabet A is {0, 1}. Take391

the tip labels of τ to be {1, . . . ,m}. For likelihood calculation under the392

binary symmetric model, we describe a given yi as a subset of indices ỹ ⊆393

Y := {1, . . . ,m−1}, commonly called a “site split.” Define the complement394

of y as y, and let yi,k be the label of the kth tip in the ith alignment column.395

We define the site split ỹ for a yi as the set of tips labeled with 1 in yi if the396

mth tip is not labeled with 1, and as the set of tips labeled with 1 in yi if the397

mth tip is labeled with 1. Taking such a complement simplifies but does398

not change the result of likelihood computation because the probability of399

observing a particular collection of binary characters is equivalent to the400

probability of its complement under the binary symmetric model.401

For a fixed topology τ , we define an ordered set of internal node labels402

{1, . . . , p} for hi and similarly use a subset of characters h̃ ⊆ H := {1, . . . , p}403

to describe a realization hi. In this case we cannot use the same complement404

trick as before: the probability of observing an ancestral state split condi-405

tional on a site split is not invariant to taking its complement. We thus406

define an “ancestral state split” h̃ for an internal node hi to be the set of407

internal nodes labeled with 1 if the mth tip is not labeled with 1, and as the408

set of internal nodes labeled with 1 in hi if the mth tip is labeled with 1. We409

emphasize that the ancestral state split complementing procedure depends410

on tip states, not ancestral states: both site splits and ancestral state splits411

are defined by whether the mth element of yi is labeled as 1.412
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We enumerate the site splits ỹj of which there are q = |P(Y)| in total413

where P denotes the power set. Similarly we enumerate ancestral state414

splits h̃k of which there are r = |P(H)| in total.415

We first fix notation.416

Definition. Let the mapping from site patterns to site splits417

ψ : Am → P(Y)

be418

ψ(y) =

 {i′ ∈ {1, . . . ,m− 1} : yi,i′ = 1} if yi,m = 0,

{i′ ∈ {1, . . . ,m− 1} : yi,i′ = 1} if yi,m = 1,

and the mapping from ancestral states and tip states to ancestral state splits419

ξ : Am ×Ap → P(H)

be420

ξ(y,h) =

 {i′ ∈ {1, . . . , p} : hi,i′ = 1} if yi,m = 0,

{i′ ∈ {1, . . . , p} : hi,i′ = 1} if yi,m = 1.

Then, given a site pattern–valued random variable Y and an ancestral state–valued421

random variable H , define the random variables422

Ψ := ψ(Y )

and423

Ξ := ξ(Y,H).

The mapping ψ operates by returning the tips labeled as 1 in a site pat-424

tern to obtain a site split in P(Y) if the set of tips labeled 1 is not in P(Y).425

The mapping ξ is defined by whether the tip states have their complements426

taken or not: if the set of tips labeled 1 in y is in P(Y), ξ(y,h) is the set of427

tips labeled 1 in h; otherwise, the set of tips labeled 1 in y necessarily is in428

P(Y) and so ξ(y,h) is h.429

We now consider the ith factor of (1). As a consequence of assuming a430
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binary symmetric model, for some ỹj ∈ P(Y) the mapping ψ(yi) has the431

property432

Pr(Ψ = ỹj ,Ξ = h̃k | τ, t) = Pr(Ψ = ψ(yi),Ξ = ξ(yi,hi) | τ, t)

= Pr((Y = yi, H = hi) ∪ (Y = yi, H = hi) | τ, t)

= Pr(Y = yi, H = hi | τ, t) + Pr(Y = yi, H = hi | τ, t)

= 2 · Pr(Y = yi, H = hi | τ, t)

where Y is the complement of the site pattern–valued random variable Y433

and has the same distribution as Y (similarly for H). Since434

2 · Pr(Y = yi, H = hi | τ, t) = Pr(Ψ = ψ(yi),Ξ = ξ(yi,hi) | τ, t),

given (τ, t), there exist sets η1(τ, t), . . . , ηq(τ, t) such that ξj ∈ ηj(τ, t) satis-435

fies436

max
h̃k∈P(H)

Pr(Ψ = ỹj ,Ξ = h̃k | τ, t) = Pr(Ψ = ỹj ,Ξ = ξj | τ, t).

In other words, for the jth site split, ηj(τ, t) ⊆ P(H) is the set of most likely437

ancestral state splits for that particular site split, topology and set of branch438

lengths, i.e., ηj(τ, t) is a set of sets of most likely internal node labels. Here,439

ξj is one of possibly many equiprobable ancestral state splits in ηj(τ, t). For440

each yi, ξ(yi, ·) is surjective as it can map values from Ap to all elements441

in P(H). This can be seen by using the definition of ξ(yi, ·) and assuming442

yi,m = 0, where in this case each of the 2p values of h correspond to each443

of the 2p elements of P({1, . . . , p}). The same can be done for the case of444

yi,m = 1, implying ξ(yi, ·) is surjective. From this we have445

max
hi

2 · Pr(Y = yi, H = hi | τ, t) = max
hi

Pr(Ψ = ψ(yi),Ξ = ξ(yi,hi) | τ, t)

= max
h̃k∈P(H)

Pr(Ψ = ỹj ,Ξ = h̃k | τ, t)

= Pr(Ψ = ỹj ,Ξ = ξj | τ, t)
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for some j. Thus, each term in the likelihood can be collapsed into terms re-446

lating only to site splits and ancestral state splits, indexed by j, as opposed447

to individual observations, indexed by i.448

Example449

We follow with an example computing these probabilities and likelihoods.450

Consider the fixed, binary four-taxon tree τ1 in Fig. 1a. The set of all possi-451

ble character assignments is452

P({1, 2, 3, 4}) = {∅, {1, 2, 3, 4}, {1}, {2, 3, 4}, {2}, {1, 3, 4}, {3}, {1, 2, 4},

{1, 2}, {3, 4}, {1, 3}, {2, 4}, {2, 3}, {1, 4}, {1, 2, 3}, {1, 4}}

where each set indicates the tips assigned the character 1. For example,453

∅ is the labeling 0000 and {1, 3, 4} is the labeling 1011. Symmetry allows454

us to group adjacent pairs in P({1, 2, 3, 4}) into equiprobable splits, letting455

Y = {1, 2, 3}. The unique site splits, collapsing complements, are456

P(Y) = {∅, {1}, {2}, {3}, {1, 2}, {1, 3}, {2, 3}, {1, 2, 3}}

=: {ỹ1, . . . , ỹ8}.

Since we identify character complements, we do not consider the addi-457

tional splits458

P({1, 2, 3, 4}) \ P(Y) =

{{1, 2, 3, 4}, {2, 3, 4}, {1, 3, 4}, {1, 2, 4}, {3, 4}, {2, 4}, {1, 4}, {4}},

the symmetry of the binary character model allowing us to focus only on459

the elements of P(Y). This tree has two internal nodes withH = {1, 2} and460

unique ancestral state splits461

P(H) = {∅, {1}, {2}, {1, 2}}.
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Internal node 1 is the node connected to leaves 1 and 3 while internal node462

2 is connected to leaves 2 and 4. The mapping from characters to splits in463

this case depends on the characters at the tips and the ancestral states. For464

example, we take both ψ(0000) = ∅ and ψ(1111) = ∅. Similarly, we have465

ξ(0000, 00) = ∅ and ξ(1111, 11) = ∅, needing to take the complement of466

all the characters present on the tree to identify splits. We cannot identify467

complements for ancestral states in the same way as tip states since, for468

ỹ ∈ P(Y),469

Pr(Ψ = ỹ,Ξ = ∅ | τ, t) 6= Pr(Ψ = ỹ,Ξ = {1, 2} | τ, t)

in general.470

For each site split ỹ ∈ P(Y), we maximize the likelihood over all h̃ ∈471

P(H). A maximum occurs at one of possibly several ancestral state splits in472

P(H), defined via ηj(τ, t) for the jth site split. As a simple example, say all473

branch lengths correspond to a probability p (< 1/2) of changing character474

along that branch, with t = {p, p, p, p, p}. The probabilities of observing475

ancestral state splits for ỹ1 = ∅ are476

Pr(Ψ = ∅,Ξ = ∅ | τ, t) = (1− p)5,
477

Pr(Ψ = ∅,Ξ = {1} | τ, t) = Pr(Ψ = ∅,Ξ = {2} | τ, t) = p3(1− p)2,
478

Pr(Ψ = ∅,Ξ = {1, 2} | τ, t) = p4(1− p).

The set of most likely ancestral states contains a single element, here η1(τ, t) =479

{∅}. Then, taking ξ1 ∈ η1(τ, t) we have480

Pr(Ψ = ∅,Ξ = ξ1 | τ, t) = Pr(Ψ = ∅,Ξ = ∅ | τ, t) = (1− p)5.

For ỹ5 = {1, 2}we have481

Pr(Ψ = {1, 2},Ξ = ∅ | τ, t) = Pr(Ψ = {1, 2},Ξ = {1, 2} | τ, t) = p2(1− p)3,
482

Pr(Ψ = {1, 2},Ξ = {1} | τ, t) = Pr(Ψ = {1, 2},Ξ = {2} | τ, t) = p3(1− p)2.
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Here, the set of most likely ancestral states is η5(τ, t) = {∅, {1, 2}}, and, for483

ξ5 ∈ η5(τ, t),484

Pr(Ψ = {1, 2},Ξ = ξ5 | τ, t) = p2(1− p)3.

Site split likelihood485

The likelihood in (3) can be written as486

L′n(τ, t;Y) = max
H

Ln(τ, t;Y,H)

=
n∏
i=1

max
hi

Pr(Y = yi, H = hi | τ, t)

∝
n∏
i=1

max
hi

Pr(Ψ = ψ(yi),Ξ = ξ(yi,hi) | τ, t)

=
n∏
i=1

Pr(Ψ = ỹj ,Ξ = ξj | τ, t)

=

q∏
j=1

[Pr(Ψ = ỹj ,Ξ = ξj | τ, t)]nj(Y) (6)

for ỹj ∈ P(Y) and some ξj ∈ ηj(τ, t) with 1 ≤ j ≤ q where nj(Y) is the487

number of columns in Y that project to site split ỹj .488

Let489

L′′n(τ, t;Y) =

q∏
j=1

[Pr(Ψ = ỹj ,Ξ = ξj | τ, t)]nj(Y)

be the final product in (6). Assume n observations are generated from a490

model with parameters (τ∗, t∗). We have491

1

n
logL′′n(τ, t;Y) =

q∑
j=1

nj(Y)

n
· log Pr(Ψ = ỹj ,Ξ = ξj | τ, t)
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so that, in the n→∞ limit,492

1

n
logL′′n(τ, t;Y)

→
q∑
j=1

Pr(Ψ = ỹj | τ∗, t∗) · log Pr(Ψ = ỹj ,Ξ = ξj | τ, t).
(7)

Hadamard representation493

We state the Hadamard representation of site split generating probabilities—494

that is, probabilities of obtaining particular site splits given a tree—following495

Section 8.6 of Semple and Steel [2003]. For each edge e define the edge “fi-496

delity” for that edge as497

θ(e) = 1− 2p(e)

where p(e) is the probability of a character change along edge e. For an498

even-sized subset of Y ⊆ S , let the path set P (Y ) be the set of edges in the499

path connecting both elements of Y . For n taxa, the probability of observing500

site split A ∈ P(Y) is501

pA =
1

2n−1

∑
Y⊆S:|Y |≡0(mod 2)

(−1)|Y ∩A|
∏

e∈P (Y )

θ(e)

 . (8)

By convention, we set P (∅) = ∅ and
∏
e∈∅ θ(e) = 1. For notational conve-502

nience, let503

pỹj := Pr(Ψ = ỹj | τ1, t),

for any site split ỹj . Table S1 contains calculations of site split probabilities504

for the trees in Fig. 1.505

Likelihood computations506

To compute the likelihood of observing a set of data, we need Pr(Ψ =507

ỹj ,Ξ = h̃k | τ, t) for each h̃k and ỹj . Using branch fidelities, the probability508

of a character change along a branch with fidelity parameter x is (1− x)/2,509

while the probability of a character remaining the same is (1 + x)/2. See510
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Figure S1: Example likelihood computations on the InvFels tree τ1 for fi-
delities t = {x1, y1, x2, y2, w}. Edges labeled by the probability of substi-
tution along that edge. In (a), we compute the product to obtain Pr(Ψ =
{2, 3},Ξ = ∅ | τ1, t) = (1 + x1)(1− x2)(1 + y1)(1− y2)(1 +w)/32. In (b), the
same process yields Pr(Ψ = {2, 3},Ξ = {1} | τ1, t) = (1 + x1)(1 − x2)(1 +
y1)(1− y2)(1− w)/32.

Fig. S1 for the parameters on an example site pattern on the InvFels tree.511

Likelihood computations for all site splits and ancestral state splits are in512

Table S2 for the InvFels tree.513

Convergence of branch parameters514

For a fixed τ , we show that t̂n → t̂ for515

t̂n = arg max
t∈T

1

n
logL′n(τ, t;Y)

and516

t̂ = arg max
t∈T

`τ∗,t∗(τ, t; ξ).

Using the notation in Section 5.2.1 in van Der Vaart [1998], we let517

mt(y) =

q∑
j=1

1{ψ(y) = ỹj} · log Pr(Ψ = ỹj ,Ξ = ξj | τ, t)

so that518

1

n
logL′n(τ, t;Y) =

1

n

n∑
i=1

mt(yi)
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and519

`τ∗,t∗(τ, t; ξ) = E[mt].

To show t̂n → t̂, we use Wald’s consistency proof [p. 48, Theorem 5.14 of520

van Der Vaart, 1998], which requires four conditions. The first is that T is521

compact, which is obviously true. The second is that522

E

[
sup
t∈T

mt

]
<∞,

and, since mt(y) is nonpositive for all t and y, this property holds. The523

remaining conditions are on the maps524

y 7→ sup
t
mt(y)

and525

t 7→ mt(y).

We need the first map to be measurable, which is evident since the do-526

main Am of the mapping is a finite set, and so all subsets of the domain527

are also finite and thus measurable. Finally, we must have the the second528

mapping be upper-semicontinuous for almost all y. For a fixed ancestral529

state split t 7→ mt(y) is continuous for all y. If we move about in T , a530

different ancestral state split becomes more likely, though when we maxi-531

mize over ancestral state splits we obtain a continuous function since the532

maximum over continuous functions is also continuous. This ensures the533

upper-semicontinuous property of this mapping, and shows t̂n → t̂, allow-534

ing our consistency results to be proved using `τ∗,t∗(τ, t; ξ).535

Properties of the joint objective function536

Consider the InvFels tree τ1 with arbitrary fidelities, i.e., t = {x1, y1, x2, y2, w}.537

Next we show that the likelihood `τ1,t(τ1, t; ξ) remains unchanged if x1 and538

x2 are exchanged or if y1 and y2 are. Although this property should not be539

surprising due to symmetry, we write it out for completeness. This holds540
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for a general t, and thus holds setting t = t∗. Using the Hadamard trans-541

form, we calculate the generating probabilities on the InvFels tree. For site542

split ∅,543

Pr(Ψ = ∅ | τ1, t) =
1

8
(1 + x1x2 + y1y2 + x1y1w + x1y2w + y1x2w + x2y2w + x1y1x2y2)

=
1

8
(1 + x1x2 + y1y2 + w[x1y1 + x1y2 + y1x2 + x2y2] + x1y1x2y2)

=
1

8
(1 + x1x2 + y1y2 + w[x1 + x2][y1 + y2] + x1y1x2y2),

and this probability is unchanged when x1 is exchanged with x2 and y1 is544

exchanged with y2. Similarly, for site split {1, 3},545

Pr(Ψ = {1, 3} | τ1, t) =
1

8
(1 + x1x2 + y1y2 −w[x1 + x2][y1 + y2] + x1y1x2y2),

which also is invariant to exchanging x1 with x2 and y1 with y2.546

All other generating probabilities differ only in the signs of each term547

(see Table S1). For example, for site split {1}we have548

Pr(Ψ = {1} | τ1, t) =
1

8
(1− x1x2 + y1y2 + w[−x1 + x2][y1 + y2]− x1y1x2y2)

and for site split {3}we have549

Pr(Ψ = {3} | τ1, t) =
1

8
(1− x1x2 + y1y2 + w[x1 − x2][y1 + y2]− x1y1x2y2)

meaning if we exchange the values of x1 and x2 then these probabilities550

swap values, regardless of what we do with y1 and y2. We show that for site551

splits {1} and {3}, exchanging x1 and x2 also swaps the values of the like-552

lihood terms, again independent of what happens to y1 and y2 (Table S2).553

Indeed, the corresponding possibilities for the likelihood values are554

Pr(Ψ = {1},Ξ = ∅ | τ1, t) =
1

32
(1− x1)(1 + x2)(1 + w)(1 + y1)(1 + y2);

Pr(Ψ = {1},Ξ = {1} | τ1, t) =
1

32
(1 + x1)(1− x2)(1− w)(1 + y1)(1 + y2);
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Pr(Ψ = {1},Ξ = {2} | τ1, t) =
1

32
(1− x1)(1 + x2)(1− w)(1− y1)(1− y2);

Pr(Ψ = {1},Ξ = {1, 2} | τ1, t) =
1

32
(1 + x1)(1− x2)(1 + w)(1− y1)(1− y2);

for site split {1} and555

Pr(Ψ = {3},Ξ = ∅ | τ1, t) =
1

32
(1 + x1)(1− x2)(1 + w)(1 + y1)(1 + y2);

Pr(Ψ = {3},Ξ = {1} | τ1, t) =
1

32
(1− x1)(1 + x2)(1− w)(1 + y1)(1 + y2);

Pr(Ψ = {3},Ξ = {2} | τ1, t) =
1

32
(1 + x1)(1− x2)(1− w)(1− y1)(1− y2);

Pr(Ψ = {3},Ξ = {1, 2} | τ1, t) =
1

32
(1− x1)(1 + x2)(1 + w)(1− y1)(1− y2);

for site split {3}, which shows the likelihood remains unchanged if x1 and556

x2 are swapped.557

For site splits {2} and {1, 2, 3}, exchanging y1 and y2 swaps the values of558

the generating probabilities, independent of what happens to x1 and x2. In559

the case of the likelihood values, we see that the values for these site splits560

swap as well, though, we look at the complement of the most likely ances-561

tral state split. In other words, the function value for the likelihood also562

swaps between site splits {2} and {1, 2, 3}, though the most likely ancestral563

state split is different. Indeed,564

Pr(Ψ = {2},Ξ = ∅ | τ1, t) =
1

32
(1 + x1)(1− y1)(1 + x2)(1 + y2)(1 + w);

Pr(Ψ = {2},Ξ = {1} | τ1, t) =
1

32
(1− x1)(1− y1)(1− x2)(1 + y2)(1− w);

Pr(Ψ = {2},Ξ = {2} | τ1, t) =
1

32
(1 + x1)(1 + y1)(1 + x2)(1− y2)(1− w);

Pr(Ψ = {2},Ξ = {1, 2} | τ1, t) =
1

32
(1− x1)(1 + y1)(1− x2)(1− y2)(1 + w);

for site split {2} and565

Pr(Ψ = {1, 2, 3},Ξ = ∅ | τ1, t) =
1

32
(1− x1)(1− y1)(1− x2)(1 + y2)(1 + w);
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Pr(Ψ = {1, 2, 3},Ξ = {1} | τ1, t) =
1

32
(1 + x1)(1− y1)(1 + x2)(1 + y2)(1− w);

Pr(Ψ = {1, 2, 3},Ξ = {2} | τ1, t) =
1

32
(1− x1)(1 + y1)(1− x2)(1− y2)(1− w);

Pr(Ψ = {1, 2, 3},Ξ = {1, 2} | τ1, t) =
1

32
(1 + x1)(1 + y1)(1 + x2)(1− y2)(1 + w);

for site split {1, 2, 3}, which shows the likelihood remains unchanged if y1566

and y2 are swapped.567

For site splits {1, 2} and {2, 3} we see the following. By exchanging568

only x1 with x2, the generating probabilities and likelihood values swap569

between these two site splits. The same is true of the generating probabili-570

ties if we exchange only y1 and y2, except, for the case of the likelihood val-571

ues, we again look at the complement of the most likely ancestral state split572

as in the case of splits {2} and {1, 2, 3}. Now, if we exchange both x1 with573

x2 and y1 with y2, we see these generating probabilities remain unchanged,574

and, for the likelihood values, we look at the complement of the most likely575

ancestral state split and see these values also remain unchanged.576

Thus exchanging x1 with x2 and y1 with y2 does not change the value577

of the log-likelihood `τ1,t(τ1, t; ξ). Therefore we can reduce the number of578

candidate likelihoods we need to search by, without loss of generality, as-579

suming x2 ≥ x1 and y2 ≥ y1, with these likelihoods given in Table S3 after580

maximizing over ancestral state splits.581

Theorems and proofs582

We begin by showing an inconsistency in branch length estimation on the583

InvFels tree.584

Theorem 1. Let τ∗ = τ1, t∗ = {x∗, y∗, x∗, y∗, y∗}, and t = {x1, y1, x2, y2, w}585

with x1, y1, x2, y2, w > 0. For all 0 < x∗, y∗ < 1, the solution t̂ := {x̂1, ŷ1, x̂2, ŷ2, ŵ}586

given by587

t̂ = arg max
t

max
ξ

`τ∗,t∗(τ1, t; ξ)

has the property t̂ 6= t∗.588
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Proof. For a fixed, known ξ, there exists a closed form solution to t̂ :=589

{x̂1, ŷ1, x̂2, ŷ2, ŵ} solving590

t̂ξ = arg max
t
`τ∗,t∗(τ1, t; ξ).

We show in this case that the log-likelihood ` attains a unique maximum at591

t̂ξ. For fixed ξ, the log-likelihood can be decomposed into a sum of func-592

tions of each variable, i.e.,593

`τ∗,t∗(τ
∗, t, ξ) =

q∑
j=1

cj · log hj,x1(x1) +

q∑
j=1

cj · log hj,y1(y1) +

q∑
j=1

cj · log hj,x2(x2)

+

q∑
j=1

cj · log hj,y2(y2) +

q∑
j=1

cj · log hj,w(w).

Due to this additive form, all off-diagonal terms of the Hessian for this594

function are zero, so we show that the diagonal terms are nonpositive.595

Without loss of generality we focus on the variable x1 and the log-likelihood596

proportional to597

`(x1) =

q∑
j=1

cj · log hj,x1(x1).

Doing calculation as in Figure S1, each functional form, suppressing con-598

stants with respect to x1 and the initial 1/32 constant, is599

hj,x1(x1) ∝ (1 + x1)
ej (1− x1)1−ej

for ej ∈ {0, 1}, which, simplifying, results in600

`(x1) ∝

 q∑
j=1

cjej

 log(1 + x1) +

 q∑
j=1

cj(1− ej)

 log(1− x1) (9)

=

 q∑
j=1

cjej

 log(1 + x1) +

1−
q∑
j=1

cjej

 log(1− x1), (10)
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which has second derivative601

`′′(x1) = −
( ∑

j cjej

(1 + x1)2
+

1−
∑

j cjej

(1− x1)2

)
.

As x1 ∈ (0, 1], we need only 0 ≤
∑

j cjej ≤ 1 to imply the diagonal602

terms of the Hessian are nonpositive. Since
∑

j cj = 1 and ej ∈ {0, 1},603

then 0 ≤
∑

j cjej ≤ 1 and `′′(x1) ≤ 0. Applying similar arguments to the604

other variables, the Hessian for the log-likelihood has nonpositive diagonal605

terms and off-diagonal terms equal to zero, and t̂ uniquely maximizes `.606

Now, by straightforward calculus, we solve for the unique maximum607

x̂1 by setting the first derivative of (10) to zero to obtain608

x̂1 = 2 ·

 q∑
j=1

cjej

− 1

where609
q∑
j=1

cjej =

q∑
j=1

1{site split j has term (1 + x1)} · pỹj .

As an example, Table S4 shows the maximal ancestral state splits and cor-610

responding likelihood values for ξ0 = [∅]qj=1. In this case,611

q∑
j=1

cjej = p∅ + p2 + p3 + p23 =
1

2
+

1

2
x∗(y∗)2

and x̂1 = x∗(y∗)2.612

We show that solutions of this form never obtain t̂ = t∗ except in cases613

of zero or infinite branch length. Given Table S1, all solutions to x̂1 have614

the form615

x̂1 = ax1,0 + ax1,1(x
∗)2 + ax1,2(y

∗)2 + ax1,3x
∗(y∗)2 + ax1,4(x

∗)2(y∗)2.

where ax1,k are constants independent of x∗ and y∗—in fact, ax1,k takes616

values in the set {i/8 : i = −4,−3, . . . , 7, 8}. The true branch fidelity for617
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x1 is x∗, and the only cases to possibly obtain x̂1 = x∗ are when y∗ = 1 or618

when (x∗)2 = x∗, i.e., one of the generating branch parameters is zero or619

infinite length; the same is true for x2. A similar argument for y1, y2, and w620

shows that estimates can only be consistent when (y∗)2 = y∗, i.e., y∗ = 0 or621

y∗ = 1.622

We now proceed to show there exist x∗ and y∗ such that the interior623

branch parameter w is estimated as exactly one, indicating convergence to624

a multifurcating topology.625

Theorem 2. Let τ∗ = τ1, t∗ = {x∗, y∗, x∗, y∗, y∗}, and t = {x1, y1, x2, y2, w}626

with x1, y1, x2, y2, w > 0. There exists an open set of 0 < x∗, y∗ < 1 such that627

the solution t̂ := {x̂1, ŷ1, x̂2, ŷ2, ŵ} given by628

t̂ = arg max
t

max
ξ

`τ∗,t∗(τ1, t; ξ)

has the property ŵ ≡ 1.629

Proof. As we have a closed form solution to our likelihood problem, we630

compute the optimal solution given Table S2. Let631

t̂ξ = argmax
t

`τ∗,t∗(τ, t; ξ).

be the closed form solution for t for a fixed maximal ancestral state split ξ.632

We need only consider the possibilities for choices of ancestral state splits633

in Table S3 as opposed to Table S2. Upon excluding cases of infinite branch634

lengths (i.e., any of x1, y1, x2, y2, w equal to zero) and the redundant cases635

of x1 > x2 and y1 > y2, we obtain636

ξ̂ = argmax
ξ

`τ∗,t∗(τ1, t̂ξ; ξ).

We show the maximal ancestral states in Fig. S2.637

Mapping each maximal ancestral state split to each likelihood value,638

we see that ŵ ≡ 1 if ξ̂ = ξ̂1 or ξ̂ = ξ̂2, which encompasses the bottom-right639

region of Figure S2.640
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ξ̂1 {∅, ∅, ∅, ∅, ∅, ∅, ∅, ∅}
ξ̂2 {∅, ∅, ∅, ∅, {1, 2}, ∅, ∅, ∅}
ξ̂3 {∅, ∅, ∅, ∅, {1, 2}, ∅, ∅, {1}}
ξ̂4 {∅, ∅, ∅, ∅, {1, 2}, ∅, {1, 2}, {1}}
ξ̂5 {∅, ∅, ∅, {1}, {1}, ∅, {1}, {1}}

Figure S2: Regions of maximal ancestral state splits on the InvFels tree τ1.
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The regions in Fig. S2 are analytically-derived regions of inconsistency641

in terms of probabilities of a character change along a branch for “perfect”642

data generated on the InvFels topology (Fig. 1) with pw∗ = py∗ (in terms of643

fidelities, w∗ = y∗). As the region of degeneracy in Fig. S2 gives the values644

of x∗ and y∗ where ŵ is guaranteed to be one, we converge on a multifur-645

cating topology in these cases. It is easy to see that when ∅ is the maximal646

ancestral state split, we have the same log-likelihood for τ1 and τ2. More-647

over, if w = 1, the internal branch becomes zero-length and the two topolo-648

gies are indistinguishable. Let T0 be such that, for t∗ = {x∗, y∗, x∗, y∗, y∗},649

t∗ ∈ T0 corresponds to x∗ and y∗ falling in the region in Fig. S2 where650

ξ̂ = ξ̂1. We can see this results in the likelihood of both topologies being651

equal, i.e.,652

max
t:t∗∈T0

`τ∗,t∗(τ1, t; ξ)

= max
t:ξ=ξ̂1,w=1,τ=τ1

Pr(Ψ = ỹj | τ∗, t∗) · Pr(Ψ = ỹj ,Ξ = ξj | τ, {x1, y1, x2, y2, w})

= max
t:ξ=ξ̂1,w=1,τ=τ2

Pr(Ψ = ỹj | τ∗, t∗) · Pr(Ψ = ỹj ,Ξ = ξj | τ, {x1, y1, x2, y2, w}).
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Figure S3: Estimates for p̂w when computing (x̂1, ŷ1, x̂2, ŷ2, ŵ) using L-
BFGS-B optimizing the classical integrated likelihood (2) rather than a joint
optimization procedure.
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InvFels tree τ = τ∗, t∗ = {x∗, y∗, x∗, y∗, y∗}
ỹj pỹj 8 · Pr(Ψ = ỹj | τ, t)
∅ p∅ 1 + (x∗)2 + (y∗)2 + 4x∗(y∗)2 + (x∗)2(y∗)2

{1} p1 1− (x∗)2 + (y∗)2 − (x∗)2(y∗)2

{2} p2 1 + (x∗)2 − (y∗)2 − (x∗)2(y∗)2

{3} p3 1− (x∗)2 + (y∗)2 − (x∗)2(y∗)2

{1, 2, 3} p123 1 + (x∗)2 − (y∗)2 − (x∗)2(y∗)2

{1, 2} p12 1− (x∗)2 − (y∗)2 + (x∗)2(y∗)2

{2, 3} p23 1− (x∗)2 − (y∗)2 + (x∗)2(y∗)2

{1, 3} p13 1 + (x∗)2 + (y∗)2 − 4x∗(y∗)2 + (x∗)2(y∗)2

InvFels tree τ = τ1, t = {x1, y1, x2, y2, w}
ỹj pỹj 8 · Pr(Ψ = ỹj | τ, t)
∅ p∅ 1 + x1x2 + y1y2 + w[x1 + x2][y1 + y2] + x1y1x2y2

{1} p1 1− x1x2 + y1y2 + w[−x1 + x2][y1 + y2]− x1y1x2y2
{2} p2 1 + x1x2 − y1y2 + w[x1 + x2][−y1 + y2]− x1y1x2y2
{3} p3 1− x1x2 + y1y2 + w[x1 − x2][y1 + y2]− x1y1x2y2
{1, 2, 3} p123 1 + x1x2 − y1y2 + w[x1 + x2][y1 − y2]− x1y1x2y2
{1, 2} p12 1− x1x2 − y1y2 + w[−x1 + x2][−y1 + y2] + x1y1x2y2

{2, 3} p23 1− x1x2 − y1y2 + w[x1 − x2][−y1 + y2] + x1y1x2y2

{1, 3} p13 1 + x1x2 + y1y2 + w[−x1 − x2][y1 + y2] + x1y1x2y2

Felsenstein tree τ = τ2, t = {x1, y1, x2, y2, w}
ỹj pỹj 8 · Pr(Ψ = ỹj | τ, t)
∅ p∅ 1 + x1y1 + x2y2 + w[x1 + y1][x2 + y2] + x1y1x2y2

{1} p1 1− x1y1 + x2y2 + w[−x1 + y1][x2 + y2]− x1y1x2y2
{2} p2 1− x1y1 + x2y2 + w[x1 − y1][x2 + y2]− x1y1x2y2
{3} p3 1 + x1y1 − x2y2 + w[x1 + y1][−x2 + y2]− x1y1x2y2
{1, 2, 3} p123 1 + x1y1 − x2y2 + w[−x1 − y1][−x2 + y2]− x1y1x2y2
{1, 2} p12 1 + x1y1 + x2y2 + w[−x1 − y1][x2 + y2] + x1y1x2y2

{2, 3} p23 1− x1y1 − x2y2 + w[x1 − y1][−x2 + y2] + x1y1x2y2

{1, 3} p13 1− x1y1 − x2y2 + w[−x1 + y1][−x2 + y2] + x1y1x2y2

Table S1: 8 times the site split probabilities pỹj on the true InvFels tree τ∗

with t∗ = {x∗, y∗, x∗, y∗, y∗}, and on the InvFels tree τ1 and Felsenstein tree
τ2 with t = {x1, y1, x2, y2, w} obtained using the Hadamard transform.
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ỹj h̃k 32 · Pr(Ψ = ỹj ,Ξ = h̃k | τ1, t)
∅ ∅ (1 + x1)(1 + y1)(1 + x2)(1 + y2)(1 + w)

{1}∗ (1− x1)(1 + y1)(1− x2)(1 + y2)(1− w)

{2}∗ (1 + x1)(1− y1)(1 + x2)(1− y2)(1− w)

{1, 2}∗ (1− x1)(1− y1)(1− x2)(1− y2)(1 + w)

{1} ∅ (1− x1)(1 + y1)(1 + x2)(1 + y2)(1 + w)

{1} (1 + x1)(1 + y1)(1− x2)(1 + y2)(1− w)

{2}∗ (1− x1)(1− y1)(1 + x2)(1− y2)(1− w)

{1, 2} (1 + x1)(1− y1)(1− x2)(1− y2)(1 + w)

{2} ∅ (1 + x1)(1− y1)(1 + x2)(1 + y2)(1 + w)

{1}∗ (1− x1)(1− y1)(1− x2)(1 + y2)(1− w)

{2} (1 + x1)(1 + y1)(1 + x2)(1− y2)(1− w)

{1, 2} (1− x1)(1 + y1)(1− x2)(1− y2)(1 + w)

{3} ∅ (1 + x1)(1 + y1)(1− x2)(1 + y2)(1 + w)

{1} (1− x1)(1 + y1)(1 + x2)(1 + y2)(1− w)

{2}∗ (1 + x1)(1− y1)(1− x2)(1− y2)(1− w)

{1, 2} (1− x1)(1− y1)(1 + x2)(1− y2)(1 + w)

{1, 2, 3} ∅ (1− x1)(1− y1)(1− x2)(1 + y2)(1 + w)

{1} (1 + x1)(1− y1)(1 + x2)(1 + y2)(1− w)

{2}∗ (1− x1)(1 + y1)(1− x2)(1− y2)(1− w)

{1, 2} (1 + x1)(1 + y1)(1 + x2)(1− y2)(1 + w)

{1, 2} ∅ (1− x1)(1− y1)(1 + x2)(1 + y2)(1 + w)

{1} (1 + x1)(1− y1)(1− x2)(1 + y2)(1− w)

{2} (1− x1)(1 + y1)(1 + x2)(1− y2)(1− w)

{1, 2} (1 + x1)(1 + y1)(1− x2)(1− y2)(1 + w)

{2, 3} ∅ (1 + x1)(1− y1)(1− x2)(1 + y2)(1 + w)

{1} (1− x1)(1− y1)(1 + x2)(1 + y2)(1− w)

{2} (1 + x1)(1 + y1)(1− x2)(1− y2)(1− w)

{1, 2} (1− x1)(1 + y1)(1 + x2)(1− y2)(1 + w)

{1, 3} ∅ (1− x1)(1 + y1)(1− x2)(1 + y2)(1 + w)

{1} (1 + x1)(1 + y1)(1 + x2)(1 + y2)(1− w)

{2}∗ (1− x1)(1− y1)(1− x2)(1− y2)(1− w)

{1, 2} (1 + x1)(1− y1)(1 + x2)(1− y2)(1 + w)

Table S2: 32 times likelihood values for all site splits ỹj and ancestral state
splits h̃k of the InvFels tree τ1. Ancestral states with ∗ are never maximal
provided parameters are in (0, 1]. By combinations of h̃k, there are 35 · 42 =
3, 888 possible forms for the likelihood.
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ỹj ηj(τ1, t) ξj 32 · Pr(Ψ = ỹj ,Ξ = ξj | τ1, t)
∅ {∅} ∅ (1 + x1)(1 + y1)(1 + x2)(1 + y2)(1 + w)

{1} {∅} ∅ (1− x1)(1 + y1)(1 + x2)(1 + y2)(1 + w)

{2} {∅} ∅ (1 + x1)(1− y1)(1 + x2)(1 + y2)(1 + w)

{3} {∅, {1}, {1, 2}} ∅ (1 + x1)(1 + y1)(1− x2)(1 + y2)(1 + w)

{1} (1− x1)(1 + y1)(1 + x2)(1 + y2)(1− w)

{1, 2} (1− x1)(1− y1)(1 + x2)(1− y2)(1 + w)

{1, 2, 3} {∅, {1}, {1, 2}} ∅ (1− x1)(1− y1)(1− x2)(1 + y2)(1 + w)

{1} (1 + x1)(1− y1)(1 + x2)(1 + y2)(1− w)

{1, 2} (1 + x1)(1 + y1)(1 + x2)(1− y2)(1 + w)

{1, 2} {∅} ∅ (1− x1)(1− y1)(1 + x2)(1 + y2)(1 + w)

{2, 3} {∅, {1}, {1, 2}} ∅ (1 + x1)(1− y1)(1− x2)(1 + y2)(1 + w)

{1} (1− x1)(1− y1)(1 + x2)(1 + y2)(1− w)

{1, 2} (1− x1)(1 + y1)(1 + x2)(1− y2)(1 + w)

{1, 3} {∅, {1}, {1, 2}} ∅ (1− x1)(1 + y1)(1− x2)(1 + y2)(1 + w)

{1} (1 + x1)(1 + y1)(1 + x2)(1 + y2)(1− w)

{1, 2} (1 + x1)(1− y1)(1 + x2)(1− y2)(1 + w)

Table S3: 32 times likelihood values on the InvFels tree τ1. Due to the sym-
metry of the likelihood, WLOG we let x2 ≥ x1 and y2 ≥ y1 and maximize
over ancestral state splits to reduce the number of possible functional forms
to consider. Likelihoods with multiple entries have maxima determined by
unknown branch length parameters. Because in 4 cases there are 3 possi-
bilities for ξj , there are 34 = 81 possible forms for the likelihood.
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ỹj ηj(τ1, t) ξj 32 · Pr(Ψ = ỹj ,Ξ = ξj | τ1, t)
∅ {∅} ∅ (1 + x1)(1 + y1)(1 + x2)(1 + y2)(1 + w)

{1} {∅} ∅ (1− x1)(1 + y1)(1 + x2)(1 + y2)(1 + w)

{2} {∅} ∅ (1 + x1)(1− y1)(1 + x2)(1 + y2)(1 + w)

{3} {∅, {1}, {1, 2}} ∅ (1 + x1)(1 + y1)(1− x2)(1 + y2)(1 + w)

{1, 2, 3} {∅, {1}, {1, 2}} ∅ (1− x1)(1− y1)(1− x2)(1 + y2)(1 + w)

{1, 2} {∅} ∅ (1− x1)(1− y1)(1 + x2)(1 + y2)(1 + w)

{2, 3} {∅, {1}, {1, 2}} ∅ (1 + x1)(1− y1)(1− x2)(1 + y2)(1 + w)

{1, 3} {∅, {1}, {1, 2}} ∅ (1− x1)(1 + y1)(1− x2)(1 + y2)(1 + w)

Table S4: 32 times the maximal likelihood values on the InvFels tree τ1
where ∅ is the most likely ancestral state split for each site split.
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