Chapter 7: Point Estimation

MATH 450

September 21st, 2017

MATH 450 Chapter 7: Point Estimation

Week 1 · · · · ·	Chapter 1: Descriptive statistics
Week 2 · · · · ·	Chapter 6: Statistics and Sampling Distributions
Week 4 · · · · ·	Chapter 7: Point Estimation
Week 7 · · · · ·	Chapter 8: Confidence Intervals
Week 10 · · · · ·	Chapter 9: Test of Hypothesis
Week 13	Two-sample inference, ANOVA, regression

<ロ> <同> <同> < 同> < 同>

æ

Overview

- 7.1 Point estimate
 - unbiased estimator
 - mean squared error
 - bootstrap
- 7.2 Methods of point estimation
 - method of moments
 - method of maximum likelihood.
- 7.3 Sufficient statistic
- 7.4 Information and Efficiency
 - Large sample properties of the maximum likelihood estimator

Definition

A point estimate $\hat{\theta}$ of a parameter θ is a single number that can be regarded as a sensible value for θ .

同 ト イヨ ト イヨ ト

• Measuring error of estimation

$$|\hat{ heta} - heta|$$
 or $(\hat{ heta} - heta)^2$

• The error of estimation is random

Definition

The mean squared error of an estimator $\hat{\theta}$ is

$$E[(\hat{\theta} - \theta)^2]$$

Theorem

$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2] = V(\hat{\theta}) + (E(\hat{\theta}) - \theta)^2$$

Bias-variance decomposition

Mean squared error = variance of estimator + $(bias)^2$

Definition

A point estimator $\hat{\theta}$ is said to be an unbiased estimator of θ if

$$E(\hat{\theta}) = \theta$$

for every possible value of θ .

Unbiased estimator \Leftrightarrow Bias = 0 \Leftrightarrow Mean squared error = variance of estimator

Proposition

If $X_1, X_2, ..., X_n$ is a random sample from a distribution with mean μ , then \overline{X} is an unbiased estimator of μ .

Proof: $E(\bar{X}) = \mu$.

Let

$$T=a_1X_1+a_2X_2+\ldots+a_nX_n,$$

then the mean and of T can be computed by

$$E(T) = a_1 E(X_1) + a_2 E(X_2) + \ldots + a_n E(X_n)$$

Theorem

The sample variance

$$S^{2} = \frac{1}{n-1} \left[\left(\sum X_{i}^{2} \right) - \frac{1}{n} \left(\sum X_{i} \right)^{2} \right]$$

is an unbiased estimator of the population variance σ^2 .

Ideas:

•
$$V(X) = E[X^2] - (EX)^2$$

• $Var[\bar{X}] = \frac{\sigma^2}{n}$, $E[\bar{X}] = \mu$

Sample proportion

- A test is done with probability of success p
- *n* independent tests are done, denote by *Y* the number of successes
- Denote by X_i the result of test i^{th} , where $X_i = 1$ when the test success and $X_i = 0$ if not, then
 - Each X_i is distributed by

Moreover,

$$Y = \sum_{i=1}^{n} X_i$$

• *E*[*Y*] =?

- A test is done with probability of success p
- *n* independent tests are done, denote by *Y* the number of successes
- Let

$$\hat{p} = \frac{Y}{n}$$

the $E[\hat{p}] = p$, i.e., \hat{p} is an unbiased estimator

Example 1

- A test is done with probability of success p
- *n* independent tests are done, denote by *Y* the number of successes
- Let

$$\hat{p} = \frac{Y}{n}$$

the $E[\hat{p}] = p$, i.e., \hat{p} is an unbiased estimator

• Crazy idea: How about using

$$\tilde{p} = \frac{Y+2}{n+4}$$

• What is the bias of \tilde{p} ?

Problem

Suppose a certain type of fertilizer has an expected yield per acre of μ_1 with variance σ^2 , whereas the expected yield for a second type of fertilizer is μ_2 with the same variance σ^2 . Let S_1^2 and S_2^2 denote the sample variances of yields based on sample sizes n_1 and n_2 , respectively, of the two fertilizers. Show that the pooled (combined) estimator

$$\hat{\sigma}^2 = \frac{(n_1 - 1)S_1^2 + (n_2 - 1)S_2^2}{n_1 + n_2 - 2}$$

is an unbiased estimator of σ^2 .

Problem

Consider a random sample X_1, \ldots, X_n from the pdf

$$f(x) = rac{1+ heta x}{2} \qquad -1 \leq x \leq 1$$

Show that $\hat{\theta} = 3\bar{X}$ is an unbiased estimator of θ .

•
$$V(X) = E[(X - EX)^2] = E[X^2] - (EX)^2$$

•
$$V(cX) = c^2 V(X)$$

•
$$V(X+c) = V(X)$$

• If
$$X_1, X_2, \ldots, X_n$$
 are independent, the

$$V(X_1 + X_2 + \ldots + X_n) = V(X_1) + V(X_2 + \ldots + V(X_n))$$

Warm-up: Sample proportion

- A test is done with probability of success p
- *n* independent tests are done, denote by *Y* the number of successes
- Denote by X_i the result of test i^{th} , where $X_i = 1$ when the test success and $X_i = 0$ if not, then
 - Each X_i is distributed by

Moreover,

$$Y = \sum_{i=1}^{n} X_i$$

• *V*[*Y*] =?

- A test is done with probability of success p
- *n* independent tests are done, denote by *Y* the number of successes
- Crazy idea: How about using

$$\tilde{p} = \frac{Y + \sqrt{n/4}}{n + \sqrt{n}}$$

- What is the bias of p?
- Compute $V(\tilde{p})$.
- Compute $MSE(\tilde{p})$?

Example 7.1 and 7.4

- ∢ ⊒ →

- ₹ 🖹 🕨

P

æ

Definition

Among all estimators of θ that are unbiased, choose the one that has minimum variance. The resulting $\hat{\theta}$ is called the minimum variance unbiased estimator (MVUE) of θ .

Recall:

- Mean squared error = variance of estimator + $(bias)^2$
- unbiased estimator \Rightarrow bias =0

 \Rightarrow MVUE has minimum mean squared error among unbiased estimators

Theorem

Let X_1, \ldots, X_n be a random sample from a normal distribution with parameters μ and σ . Then the estimator $\hat{\mu} = \bar{X}$ is the MVUE for μ .

イロン イロン イヨン イヨン

æ

Normal vs. Cauchy

Question: Let X_1, \ldots, X_n be a random sample from a normal distribution with parameters μ and σ . What is the best estimator of the mean μ ?

Answer: It depends.

- Normal distribution ightarrow reasonable tails ightarrow sample mean \hat{X}
- Cauchy distribution ightarrow heavy tails, symmetric ightarrow sample median \tilde{X}
- \bullet Uniform distribution \rightarrow no tails, uniform

$$\hat{X}_{e} = rac{\mathsf{largest number} + \mathsf{smaller number}}{2}$$

• In all cases, 10% trimmed mean performs pretty well

Definition $\mathsf{standard} \ \mathsf{error} = \sigma_{\hat{\theta}} = \sqrt{\mathcal{V}(\hat{\theta})}$

If the standard error itself involves unknown parameters whose values can be estimated, substitution of these estimates into $\sigma_{\hat{\theta}}$ yields the estimated standard error of the estimator, denoted by $s_{\hat{\theta}}$.

 $\begin{array}{ccc} \text{population parameter} \Longrightarrow & \textit{sample} & \Longrightarrow \textit{estimate} \\ \theta & \Longrightarrow X_1, X_2, \dots, X_n \Longrightarrow & \hat{\theta} \end{array}$

We now that

$$\sigma_{\bar{X}} = \frac{\sigma_X}{\sqrt{n}}$$

- ...but computing that is quite difficult
- What if the formula of $\hat{\theta}$ is very complicated?

Parametric model

. . .

- Suppose that the population pdf is f(x; θ) (which means that X₁, X₂,..., X_n are sampled from a distribution with pdf f(x; θ))
- data x_1, x_2, \ldots, x_n are collected \rightarrow point estimate $\hat{\theta}$
- if we have time/money, we can do the experiment again, collect new set of data, and get $\hat{\theta}_1$
- do the experiment again, get $\hat{ heta}_2$
- do the experiment again for the B^{th} time, get $\hat{\theta}_B$

$$\sigma_{\hat{\theta}} = \sqrt{\frac{1}{B-1}\sum (\hat{\theta}_i - \bar{\theta})^2}, \qquad \bar{\theta} = \frac{\hat{\theta}_1 + \hat{\theta}_2 + \ldots + \hat{\theta}_B}{B}$$

boot.strap

noun

- 1. a loop at the back of a boot, used to pull it on.
- 2. COMPUTING

a technique of loading a program into a computer by means of a few initial instructions that enable the introduction of the rest of the program from an input device.

verb

- get (oneself or something) into or out of a situation using existing resources. "the company is bootstrapping itself out of a marred financial past"
- 2. COMPUTING

fuller form of boot¹ (sense 3 of the verb).

adjective

 (of a person or project) using one's own resources rather than external help. "a bootstrap capitalist's trip up the entrepreneurial ladder"

A B > A B >

- Suppose that the population pdf is f(x; θ) (which means that X₁, X₂,..., X_n are sampled from a distribution with pdf f(x; θ))
- data x_1, x_2, \ldots, x_n are collected \rightarrow point estimate $\hat{\theta}$

Bootstrapping:

- plug $\hat{\theta}$ into the formula of $f(x, \theta) \rightarrow$ density function $f(x, \hat{\theta})$
- simulate new sample x_1, x_2, \ldots, x_n from $f(x, \hat{\theta})$

Parametric bootstrap

- plug $\hat{\theta}$ into the formula of $f(x, \theta)$
- simulate new sample $x_1^*, x_2^*, \ldots, x_n^*$ from $f(x, \hat{\theta})$
 - First bootstrap sample: $x_1^*, x_2^*, \dots, x_n^*
 ightarrow {
 m get} \ \hat{ heta}_1$
 - Second bootstrap sample $ightarrow \hat{ heta}_2$
 - B^{th} bootstrap sample $ightarrow \hat{ heta}_B$

Bootstrapping estimate:

. . .

$$\sigma_{\hat{\theta}} = \sqrt{\frac{1}{B-1} \sum (\hat{\theta}_i - \bar{\theta})^2}, \qquad \bar{\theta} = \frac{\hat{\theta}_1 + \hat{\theta}_2 + \ldots + \hat{\theta}_B}{B}$$