
Chapter 7: Point Estimation

MATH 450

September 21st, 2017

MATH 450 Chapter 7: Point Estimation



Where are we?

Week 1 · · · · · ·• Chapter 1: Descriptive statistics

Week 2 · · · · · ·• Chapter 6: Statistics and Sampling
Distributions

Week 4 · · · · · ·• Chapter 7: Point Estimation

Week 7 · · · · · ·• Chapter 8: Confidence Intervals

Week 10 · · · · · ·• Chapter 9: Test of Hypothesis

Week 13 · · · · · ·• Two-sample inference, ANOVA, regression
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Overview

7.1 Point estimate

unbiased estimator
mean squared error
bootstrap

7.2 Methods of point estimation

method of moments
method of maximum likelihood.

7.3 Sufficient statistic

7.4 Information and Efficiency

Large sample properties of the maximum likelihood estimator
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Point estimate

Definition

A point estimate θ̂ of a parameter θ is a single number that can be
regarded as a sensible value for θ.

population parameter =⇒ sample =⇒ estimate

θ =⇒ X1,X2, . . . ,Xn =⇒ θ̂
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Mean Squared Error

Measuring error of estimation

|θ̂ − θ| or (θ̂ − θ)2

The error of estimation is random

Definition

The mean squared error of an estimator θ̂ is

E [(θ̂ − θ)2]
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Bias-variance decomposition

Theorem

MSE (θ̂) = E [(θ̂ − θ)2] = V (θ̂) +
(
E (θ̂)− θ

)2

Bias-variance decomposition

Mean squared error = variance of estimator + (bias)2
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Unbiased estimators

Definition

A point estimator θ̂ is said to be an unbiased estimator of θ if

E (θ̂) = θ

for every possible value of θ.

Unbiased estimator

⇔ Bias = 0

⇔ Mean squared error = variance of estimator
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Sample mean as an unbiased estimator

Proposition

If X1,X2, . . . ,Xn is a random sample from a distribution with mean
µ, then X̄ is an unbiased estimator of µ.

Proof: E (X̄ ) = µ.

Let
T = a1X1 + a2X2 + . . .+ anXn,

then the mean and of T can be computed by

E (T ) = a1E (X1) + a2E (X2) + . . .+ anE (Xn)
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Sample variance as an unbiased estimator

Theorem

The sample variance

S2 =
1

n − 1

[(∑
X 2
i

)
− 1

n

(∑
Xi

)2
]

is an unbiased estimator of the population variance σ2.

Ideas:

V (X ) = E [X 2]− (EX )2

Var [X̄ ] = σ2

n , E [X̄ ] = µ
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Sample proportion

A test is done with probability of success p

n independent tests are done, denote by Y the number of
successes

Denote by Xi the result of test i th, where Xi = 1 when the
test success and Xi = 0 if not, then

Each Xi is distributed by

x 0 1
p(x) 1-p p

E [X ] =?
Moreover,

Y =
n∑

i=1

Xi

E [Y ] =?
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Sample proportion

A test is done with probability of success p

n independent tests are done, denote by Y the number of
successes

Let

p̂ =
Y

n

the E [p̂] = p, i.e., p̂ is an unbiased estimator
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Example 1

A test is done with probability of success p

n independent tests are done, denote by Y the number of
successes

Let

p̂ =
Y

n

the E [p̂] = p, i.e., p̂ is an unbiased estimator

Crazy idea: How about using

p̃ =
Y + 2

n + 4

What is the bias of p̃?
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Example 2

Problem

Suppose a certain type of fertilizer has an expected yield per acre
of µ1 with variance σ2, whereas the expected yield for a second
type of fertilizer is µ2 with the same variance σ2. Let S2

1 and S2
2

denote the sample variances of yields based on sample sizes n1 and
n2, respectively, of the two fertilizers.
Show that the pooled (combined) estimator

σ̂2 =
(n1 − 1)S2

1 + (n2 − 1)S2
2

n1 + n2 − 2

is an unbiased estimator of σ2.
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Example 3

Problem

Consider a random sample X1, . . . ,Xn from the pdf

f (x) =
1 + θx

2
− 1 ≤ x ≤ 1

Show that θ̂ = 3X̄ is an unbiased estimator of θ.

MATH 450 Chapter 7: Point Estimation



Recap: some properties of variance

V (X ) = E [(X − EX )2] = E [X 2]− (EX )2

V (cX ) = c2V (X )

V (X + c) = V (X )

If X1,X2, . . . ,Xn are independent, the

V (X1 + X2 + . . .+ Xn) = V (X1) + V (X2 + . . .+ V (Xn)
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Warm-up: Sample proportion

A test is done with probability of success p

n independent tests are done, denote by Y the number of
successes

Denote by Xi the result of test i th, where Xi = 1 when the
test success and Xi = 0 if not, then

Each Xi is distributed by

x 0 1
p(x) 1-p p

V [X ] =?
Moreover,

Y =
n∑

i=1

Xi

V [Y ] =?
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Example 4

A test is done with probability of success p

n independent tests are done, denote by Y the number of
successes

Crazy idea: How about using

p̃ =
Y +

√
n/4

n +
√
n

What is the bias of p̃?

Compute V (p̃).

Compute MSE(p̃)?
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Example 7.1 and 7.4
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Minimum variance unbiased estimator (MVUE)

Definition

Among all estimators of θ that are unbiased, choose the one that
has minimum variance. The resulting θ̂ is called the minimum
variance unbiased estimator (MVUE) of θ.

Recall:

Mean squared error = variance of estimator + (bias)2

unbiased estimator ⇒ bias =0

⇒ MVUE has minimum mean squared error among unbiased
estimators
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MVUE of normal distributions

Theorem

Let X1, . . . ,Xn be a random sample from a normal distribution
with parameters µ and σ. Then the estimator µ̂ = X̄ is the MVUE
for µ.
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Example 7.8
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Normal vs. Cauchy
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What is the best estimator of the mean?

Question: Let X1, . . . ,Xn be a random sample from a normal
distribution with parameters µ and σ. What is the best estimator
of the mean µ?

Answer: It depends.

Normal distribution → reasonable tails → sample mean X̂

Cauchy distribution → heavy tails, symmetric → sample
median X̃

Uniform distribution → no tails, uniform

X̂e =
largest number + smaller number

2

In all cases, 10% trimmed mean performs pretty well
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Reporting a point estimate: the standard error

Definition

standard error = σθ̂ =

√
V (θ̂)

If the standard error itself involves unknown parameters whose values can
be estimated, substitution of these estimates into σθ̂ yields the estimated
standard error of the estimator, denoted by sθ̂.

MATH 450 Chapter 7: Point Estimation



How to compute standard error?

population parameter =⇒ sample =⇒ estimate

θ =⇒ X1,X2, . . . ,Xn =⇒ θ̂

We now that
σX̄ =

σX√
n

...but computing that is quite difficult

What if the formula of θ̂ is very complicated?
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Parametric model

Suppose that the population pdf is f (x ; θ)
(which means that X1,X2, . . . ,Xn are sampled from a
distribution with pdf f (x ; θ))

data x1, x2, . . . , xn are collected → point estimate θ̂

if we have time/money, we can do the experiment again,
collect new set of data, and get θ̂1

do the experiment again, get θ̂2

. . .

do the experiment again for the Bth time, get θ̂B

σθ̂ =

√
1

B − 1

∑
(θ̂i − θ̄)2, θ̄ =

θ̂1 + θ̂2 + . . .+ θ̂B
B
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Bootstrap
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Parametric bootstrap

Suppose that the population pdf is f (x ; θ)
(which means that X1,X2, . . . ,Xn are sampled from a
distribution with pdf f (x ; θ))

data x1, x2, . . . , xn are collected → point estimate θ̂

Bootstrapping:

plug θ̂ into the formula of f (x , θ) → density function f (x , θ̂)

simulate new sample x1, x2, . . . , xn from f (x , θ̂)
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Parametric bootstrap

plug θ̂ into the formula of f (x , θ)

simulate new sample x∗1 , x
∗
2 , . . . , x

∗
n from f (x , θ̂)

First bootstrap sample: x∗1 , x
∗
2 , . . . , x

∗
n → get θ̂1

Second bootstrap sample → θ̂2

. . .
B th bootstrap sample → θ̂B

Bootstrapping estimate:

σθ̂ =

√
1

B − 1

∑
(θ̂i − θ̄)2, θ̄ =

θ̂1 + θ̂2 + . . .+ θ̂B
B
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