Chapter 7: Point Estimation

MATH 450

September 26th, 2017

Where are we?

Week 1 · · · · ·	Chapter 1: Descriptive statistics
Week 2 · · · · ·	Chapter 6: Statistics and Sampling Distributions
Week 4 · · · ·	Chapter 7: Point Estimation
Week 7 · · · · ·	Chapter 8: Confidence Intervals
Week 10 · · · ·	Chapter 9: Test of Hypothesis
Week 13 · · · · ·	Two-sample inference, ANOVA, regression

Overview

- 7.1 Point estimate
 - unbiased estimator
 - mean squared error
 - bootstrap
- 7.2 Methods of point estimation
 - method of moments
 - method of maximum likelihood.
- 7.3 Sufficient statistic
- 7.4 Information and Efficiency
 - Large sample properties of the maximum likelihood estimator

Mean Squared Error

Measuring error of estimation

$$|\hat{\theta} - \theta|$$
 or $(\hat{\theta} - \theta)^2$

The error of estimation is random

Definition

The mean squared error of an estimator $\hat{\theta}$ is

$$E[(\hat{\theta} - \theta)^2]$$

Bias-variance decomposition

Theorem

$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2] = V(\hat{\theta}) + (E(\hat{\theta}) - \theta)^2$$

Bias-variance decomposition

Mean squared error = variance of estimator + $(bias)^2$

Unbiased estimators

Definition

A point estimator $\hat{\theta}$ is said to be an unbiased estimator of θ if

$$E(\hat{\theta}) = \theta$$

for every possible value of θ .

Unbiased estimator

$$\Leftrightarrow$$
 Bias = 0

 \Leftrightarrow Mean squared error = variance of estimator

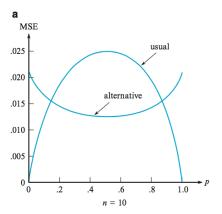
Example 4

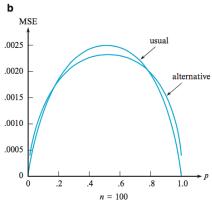
- A test is done with probability of success p
- n independent tests are done, denote by Y the number of successes
- Crazy idea: How about using

$$\tilde{p} = \frac{Y + \sqrt{n/4}}{n + \sqrt{n}}$$

- What is the bias of \tilde{p} ?
- Compute $V(\tilde{p})$.
- Compute $MSE(\tilde{p})$?

Example 7.1 and 7.4





Minimum variance unbiased estimator (MVUE)

Definition

Among all estimators of θ that are unbiased, choose the one that has minimum variance. The resulting $\hat{\theta}$ is called the minimum variance unbiased estimator (MVUE) of θ .

Recall:

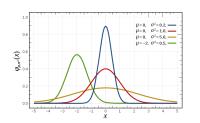
- Mean squared error = variance of estimator $+ (bias)^2$
- unbiased estimator \Rightarrow bias =0
- \Rightarrow MVUE has minimum mean squared error among unbiased estimators

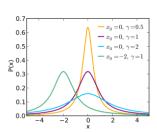
MVUE of normal distributions

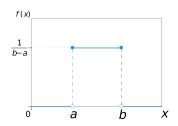
Theorem

Let $X_1, ..., X_n$ be a random sample from a normal distribution with parameters μ and σ . Then the estimator $\hat{\mu} = \bar{X}$ is the MVUE for μ .

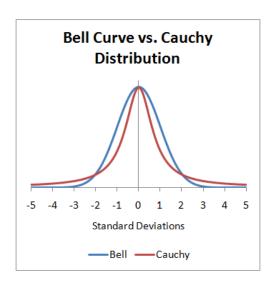
Example 7.8







Normal vs. Cauchy



What is the best estimator of the mean?

Question: Let X_1, \ldots, X_n be a random sample from a normal distribution with parameters μ and σ . What is the best estimator of the mean μ ?

Answer: It depends.

- ullet Normal distribution o reasonable tails o sample mean \hat{X}
- ullet Cauchy distribution o heavy tails, symmetric o sample median $ilde{X}$
- ullet Uniform distribution o no tails, uniform

$$\hat{X}_e = \frac{\mathsf{largest} \ \mathsf{number} + \mathsf{smaller} \ \mathsf{number}}{2}$$

• In all cases, 10% trimmed mean performs pretty well

Reporting a point estimate: the standard error

Definition

standard error
$$=\sigma_{\hat{\theta}}=\sqrt{V(\hat{\theta})}$$

If the standard error itself involves unknown parameters whose values can be estimated, substitution of these estimates into $\sigma_{\hat{\theta}}$ yields the estimated standard error of the estimator, denoted by $s_{\hat{\theta}}$.

How to compute standard error?

population parameter
$$\Longrightarrow$$
 sample \Longrightarrow estimate $\theta \Longrightarrow X_1, X_2, \dots, X_n \Longrightarrow \hat{\theta}$

We now that

$$\sigma_{\bar{X}} = \frac{\sigma_X}{\sqrt{n}}$$

- ...but computing that is quite difficult
- ullet What if the formula of $\hat{ heta}$ is very complicated?

Parametric model

- Suppose that the population pdf is $f(x; \theta)$ (which means that X_1, X_2, \ldots, X_n are sampled from a distribution with pdf $f(x; \theta)$)
- data x_1, x_2, \dots, x_n are collected \rightarrow point estimate $\hat{\theta}$
- ullet if we have time/money, we can do the experiment again, collect new set of data, and get $\hat{ heta}_1$
- do the experiment again, get $\hat{ heta}_2$
- ullet do the experiment again for the B^{th} time, get $\hat{ heta}_B$

$$\sigma_{\hat{\theta}} = \sqrt{\frac{1}{B-1} \sum (\hat{\theta}_i - \bar{\theta})^2}, \quad \bar{\theta} = \frac{\hat{\theta}_1 + \hat{\theta}_2 + \ldots + \hat{\theta}_B}{B}$$

Bootstrap

boot-strap

/'boot strap/ •

noun

- 1. a loop at the back of a boot, used to pull it on.
- 2. COMPUTING

a technique of loading a program into a computer by means of a few initial instructions that enable the introduction of the rest of the program from an input device.

verb

- get (oneself or something) into or out of a situation using existing resources.
 "the company is bootstrapping itself out of a marred financial past"
- COMPUTING

fuller form of boot¹ (sense 3 of the verb).

adjective

(of a person or project) using one's own resources rather than external help.
"a bootstrap capitalist's trip up the entrepreneurial ladder"

Parametric bootstrap

- Suppose that the population pdf is $f(x; \theta)$ (which means that X_1, X_2, \ldots, X_n are sampled from a distribution with pdf $f(x; \theta)$)
- data x_1, x_2, \dots, x_n are collected \rightarrow point estimate $\hat{\theta}$

Bootstrapping:

- plug $\hat{\theta}$ into the formula of $f(x,\theta) o$ density function $f(x,\hat{\theta})$
- simulate new sample x_1, x_2, \ldots, x_n from $f(x, \hat{\theta})$

Parametric bootstrap

- plug $\hat{\theta}$ into the formula of $f(x, \theta)$
- simulate new sample $x_1^*, x_2^*, \dots, x_n^*$ from $f(x, \hat{\theta})$
 - ullet First bootstrap sample: $x_1^*, x_2^*, \dots, x_n^* o \operatorname{\mathsf{get}} \hat{ heta}_1$
 - ullet Second bootstrap sample o $\hat{ heta}_2$
 - ullet B^{th} bootstrap sample o $\hat{ heta}_B$

Bootstrapping estimate:

$$\sigma_{\hat{\theta}} = \sqrt{\frac{1}{B-1} \sum (\hat{\theta}_i - \bar{\theta})^2}, \quad \bar{\theta} = \frac{\hat{\theta}_1 + \hat{\theta}_2 + \ldots + \hat{\theta}_B}{B}$$