Chapter 7: Point Estimation

MATH 450

October 5th, 2017

Countdown to mid-term exam: 21 days

Week 1 · · · · ·	Chapter 1: Descriptive statistics
Week 2 · · · · ·	Chapter 6: Statistics and Sampling Distributions
Week 4 · · · · ·	Chapter 7: Point Estimation
Week 7 · · · · ·	Chapter 8: Confidence Intervals
Week 10 · · · ·	Chapter 9: Test of Hypothesis
Week 13 · · · · ·	Two-sample inference, ANOVA, regression

Overview

- 7.1 Point estimate
 - unbiased estimator
 - mean squared error
 - bootstrap
- 7.2 Methods of point estimation
 - method of moments
 - method of maximum likelihood.
- 7.3 Sufficient statistic
- 7.4 Information and Efficiency
 - Large sample properties of the maximum likelihood estimator

Sufficient statistic

Conditional probability

 For discrete random variables, the conditional probability mass function of Y given the occurrence of the value x of X can be written according to its definition as:

$$P(Y = y | X = x) = \frac{P(Y = y, X = x)}{P(X = x)}$$

 For continuous random variables, the conditional probability of Y given the occurrence of the value x of X has density function

$$f_Y(y|X=x) = \frac{f_{joint}(y,x)}{f(x)}$$

Some observations

- Basic estimation problem:
 - Given a density function $f(x, \theta)$ and a sample X_1, X_2, \dots, X_n
 - Construct a statistic $\hat{\theta} = T(X_1, X_2, \dots, X_n)$
 - Different statistic t leads different estimate, different accuracies
- If, however, the distribution of $t(X_1, X_2, ..., X_n)$ does not depend on θ , then it is no good
- Similarly, if the conditional probability

$$P(X_1, X_2, \ldots, X_n | T)$$

does not depend on θ , then this means that $T(X_1, X_2, \dots, X_n)$ contained all the information to estimate θ

Sufficient statistic

Definition

A statistic $T=t(X_1,\ldots,X_n)$ is said to be sufficient for making inferences about a parameter θ if the joint distribution of X_1,X_2,\ldots,X_n given that T=t does not depend upon θ for every possible value t of the statistic T.

Fisher-Neyman factorization theorem

Theorem

T is sufficient for if and only if nonnegative functions g and h can be found such that

$$f(x_1, x_2, ..., x_n; \theta) = g(t(x_1, x_2, ..., x_n), \theta) \cdot h(x_1, x_2, ..., x_n)$$

i.e. the joint density can be factored into a product such that one factor, h does not depend on θ ; and the other factor, which does depend on θ , depends on x only through t(x).

Jointly sufficient statistic

Definition

The m statistics $T_1 = t_1(X_1, \ldots, X_n)$, $T_2 = t_2(X_1, \ldots, X_n)$, ..., $T_m = t_m(X_1, \ldots, X_n)$ are said to be jointly sufficient for the parameters $\theta_1, \theta_2, \ldots, \theta_k$ if the joint distribution of X_1, X_2, \ldots, X_n given that

$$T_1 = t_1, T_2 = t_2, \ldots, T_m = t_m$$

does not depend upon $\theta_1, \theta_2, \dots, \theta_k$ for every possible value t_1, t_2, \dots, t_m of the statistics.

Fisher-Neyman factorization theorem

Theorem

 T_1, T_2, \ldots, T_m are sufficient for $\theta_1, \theta_2, \ldots, \theta_k$ if and only if nonnegative functions g and h can be found such that

$$f(x_1, x_2, \ldots, x_n; \theta_1, \theta_2, \ldots, \theta_k) = g(t_1, t_2, \ldots, t_m, \theta_1, \theta_2, \ldots, \theta_k)$$
$$\cdot h(x_1, x_2, \ldots, x_n)$$

Example 3

• Let $X_1, X_2, ..., X_n$ be a random sample from $\mathcal{N}(\mu, \sigma^2)$

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Prove that

$$T_1 = X_1 + \ldots + X_n, \qquad T_2 = X_1^2 + X_2^2 + \ldots + X_n^2$$

are jointly sufficient for the two parameters μ and σ .

Example 4

• Let $X_1, X_2, ..., X_n$ be a random sample from a Gamma distribution

$$f_X(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}$$

where α, β is unknown.

Prove that

$$T_1 = X_1 + \ldots + X_n, \qquad T_2 = \prod_{i=1}^n X_i$$

are jointly sufficient for the two parameters α and β .

Information

Fisher information

Definition

The Fisher information $I(\theta)$ in a single observation from a pmf or pdf $f(x;\theta)$ is the variance of the random variable $U=\frac{\partial \log f(X,\theta)}{\partial \theta}$, which is

$$I(\theta) = Var \left[\frac{\partial \log f(X, \theta)}{\partial \theta} \right]$$

Note: We always have E[U] = 0.

Example

Problem

Let X be distributed by

$$\begin{array}{c|cccc} x & 0 & 1 \\ \hline f(x,\theta) & 1-\theta & \theta \end{array}$$

Compute $I(X, \theta)$.

Hint:

• If x = 1, then $f(x, \theta) = \theta$. Thus

$$u(x) = \frac{\partial \log f(x, \theta)}{\partial \theta} = \frac{1}{\theta}$$

• How about x = 0?

Example

Problem

Let X be distributed by

$$\begin{array}{c|cccc} x & 0 & 1 \\ \hline f(x,\theta) & 1-\theta & \theta \end{array}$$

Compute $I(X, \theta)$.

We have

$$Var[U] = E[U^{2}] - (E[U])^{2} = E[U^{2}]$$

$$= \sum_{x=0,1} U^{2}(x)f(x,\theta)$$

$$= \frac{1}{(1-\theta)^{2}} \cdot (1-\theta) + \frac{1}{\theta^{2}} \cdot \theta$$

The Cramer-Rao Inequality

Theorem

Assume a random sample $X_1, X_2, ..., X_n$ from the distribution with pmf or pdf $f(x, \theta)$ such that the set of possible values does not depend on θ . If the statistic $T = t(X_1, X_2, ..., X_n)$ is an unbiased estimator for the parameter θ , then

$$V(T) \geq \frac{1}{n \cdot I(\theta)}$$

Efficiency

Theorem

Let $T = t(X_1, X_2, ..., X_n)$ is an unbiased estimator for the parameter θ , the ratio of the lower bound to the variance of T is its efficiency

$$\textit{Efficiency} = \frac{1}{\textit{nI}(\theta)\textit{V}(\textit{T})} \leq 1$$

T is said to be an efficient estimator if T achieves the CramerRao lower bound (i.e., the efficiency is 1).

Note: An efficient estimator is a minimum variance unbiased (MVUE) estimator.

Large Sample Properties of the MLE

$\mathsf{Theorem}$

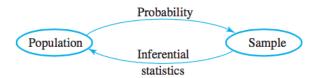
Given a random sample $X_1, X_2, ..., X_n$ from the distribution with pmf or pdf $f(x,\theta)$ such that the set of possible values does not depend on θ . Then for large n the maximum likelihood estimator $\hat{\theta}$ has approximately a normal distribution with mean θ and variance $\frac{1}{n \cdot I(\theta)}$.

More precisely, the limiting distribution of $\sqrt{n}(\hat{\theta} - \theta)$ is normal with mean 0 and variance $1/I(\theta)$.

The Central Limit Theorem

Theorem

Let X_1, X_2, \ldots, X_n be a random sample from a distribution with mean μ and variance σ^2 . Then, in the limit when $n \to \infty$, the standardized version of \bar{X} have the standard normal distribution


$$\lim_{n\to\infty} \mathbb{P}\left(\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \le z\right) = \mathbb{P}[Z \le z] = \Phi(z)$$

Chapter 7: Summary

Overview

- 7.1 Point estimate
 - unbiased estimator
 - mean squared error
 - bootstrap
- 7.2 Methods of point estimation
 - method of moments
 - method of maximum likelihood.
- 7.3 Sufficient statistic
- 7.4 Information and Efficiency
 - Large sample properties of the maximum likelihood estimator

Point estimate

Definition

A point estimate $\hat{\theta}$ of a parameter θ is a single number that can be regarded as a sensible value for θ .

population parameter
$$\Longrightarrow$$
 sample \Longrightarrow estimate $\theta \Longrightarrow X_1, X_2, \dots, X_n \Longrightarrow \hat{\theta}$

Mean Squared Error

Measuring error of estimation

$$|\hat{\theta} - \theta|$$
 or $(\hat{\theta} - \theta)^2$

The error of estimation is random

Definition

The mean squared error of an estimator $\hat{\theta}$ is

$$E[(\hat{\theta} - \theta)^2]$$

Bias-variance decomposition

Theorem

$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2] = V(\hat{\theta}) + (E(\hat{\theta}) - \theta)^2$$

Bias-variance decomposition

Mean squared error = variance of estimator + $(bias)^2$

Unbiased estimators

Definition

A point estimator $\hat{\theta}$ is said to be an unbiased estimator of θ if

$$E(\hat{\theta}) = \theta$$

for every possible value of θ .

Unbiased estimator

$$\Leftrightarrow$$
 Bias = 0

 \Leftrightarrow Mean squared error = variance of estimator

Example 1

Problem

Consider a random sample X_1, \ldots, X_n from the pdf

$$f(x) = \frac{1 + \theta x}{2} \qquad -1 \le x \le 1$$

Show that $\hat{\theta} = 3\bar{X}$ is an unbiased estimator of θ .

Overview

- 7.1 Point estimate
 - unbiased estimator
 - mean squared error
 - bootstrap
- 7.2 Methods of point estimation
 - method of moments
 - method of maximum likelihood.
- 7.3 Sufficient statistic
- 7.4 Information and Efficiency
 - Large sample properties of the maximum likelihood estimator

Method of moments: ideas

• Let X_1, \ldots, X_n be a random sample from a distribution with pmf or pdf

$$f(x; \theta_1, \theta_2, \ldots, \theta_m)$$

• Assume that for k = 1, ..., m

$$\frac{X_1^k + X_2^k + \ldots + X_n^k}{n} = E(X^k)$$

• Solve the system of equations for $\theta_1, \theta_2, \dots, \theta_m$

Method of moments: Example 4

Problem

Suppose that for a parameter $0 \le \theta \le 1$, X is the outcome of the roll of a four-sided tetrahedral die

Suppose the die is rolled 10 times with outcomes

Use the method of moments to obtain an estimator of θ .

Maximum likelihood estimator

• Let $X_1, X_2, ..., X_n$ have joint pmf or pdf

$$f_{joint}(x_1, x_2, \ldots, x_n; \theta)$$

where θ is unknown.

- When x_1, \ldots, x_n are the observed sample values and this expression is regarded as a function of θ , it is called the likelihood function.
- The maximum likelihood estimates θ_{ML} are the value for θ that maximize the likelihood function:

$$f_{joint}(x_1, x_2, \dots, x_n; \theta_{ML}) \ge f_{joint}(x_1, x_2, \dots, x_n; \theta) \quad \forall \theta$$

How to find the MLE?

- Step 1: Write down the likelihood function.
- Step 2: Can you find the maximum of this function?
- Step 3: Try taking the logarithm of this function.
- Step 4: Find the maximum of this new function.

To find the maximum of a function of θ :

- ullet compute the derivative of the function with respect to heta
- set this expression of the derivative to 0
- solve the equation

Example 3

• Let X_1, \ldots, X_{10} be a random sample of size n = 10 from a distribution with pdf

$$f(x) = \begin{cases} (\theta + 1)x^{\theta} & \text{if } 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

• The observed x_i 's are

$$0.92, 0.79, 0.90, 0.65, 0.86, 0.47, 0.73, 0.97, 0.94, 0.77$$

• Question: Use the method of maximum likelihood to obtain an estimator of θ .

Overview

- 7.1 Point estimate
 - unbiased estimator
 - mean squared error
 - bootstrap
- 7.2 Methods of point estimation
 - method of moments
 - method of maximum likelihood.
- 7.3 Sufficient statistic
- 7.4 Information and Efficiency
 - Large sample properties of the maximum likelihood estimator

Fisher-Neyman factorization theorem

Theorem

T is sufficient for if and only if nonnegative functions g and h can be found such that

$$f(x_1, x_2, ..., x_n; \theta) = g(t(x_1, x_2, ..., x_n), \theta) \cdot h(x_1, x_2, ..., x_n)$$

i.e. the joint density can be factored into a product such that one factor, h does not depend on θ ; and the other factor, which does depend on θ , depends on x only through t(x).

Fisher information

Definition

The Fisher information $I(\theta)$ in a single observation from a pmf or pdf $f(x;\theta)$ is the variance of the random variable $U=\frac{\partial \log f(X,\theta)}{\partial \theta}$, which is

$$I(\theta) = Var \left[\frac{\partial \log f(X, \theta)}{\partial \theta} \right]$$

Note: We always have E[U] = 0.

The Cramer-Rao Inequality

Theorem

Assume a random sample $X_1, X_2, ..., X_n$ from the distribution with pmf or pdf $f(x, \theta)$ such that the set of possible values does not depend on θ . If the statistic $T = t(X_1, X_2, ..., X_n)$ is an unbiased estimator for the parameter θ , then

$$V(T) \geq \frac{1}{n \cdot I(\theta)}$$

Large Sample Properties of the MLE

$\mathsf{Theorem}$

Given a random sample $X_1, X_2, ..., X_n$ from the distribution with pmf or pdf $f(x,\theta)$ such that the set of possible values does not depend on θ . Then for large n the maximum likelihood estimator $\hat{\theta}$ has approximately a normal distribution with mean θ and variance $\frac{1}{n \cdot I(\theta)}$.

More precisely, the limiting distribution of $\sqrt{n}(\hat{\theta} - \theta)$ is normal with mean 0 and variance $1/I(\theta)$.