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Countdown to mid-term exam: 21 days

Week 1 · · · · · ·• Chapter 1: Descriptive statistics

Week 2 · · · · · ·• Chapter 6: Statistics and Sampling
Distributions

Week 4 · · · · · ·• Chapter 7: Point Estimation

Week 7 · · · · · ·• Chapter 8: Confidence Intervals

Week 10 · · · · · ·• Chapter 9: Test of Hypothesis

Week 13 · · · · · ·• Two-sample inference, ANOVA, regression
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Overview

7.1 Point estimate

unbiased estimator
mean squared error
bootstrap

7.2 Methods of point estimation

method of moments
method of maximum likelihood.

7.3 Sufficient statistic

7.4 Information and Efficiency
Large sample properties of the maximum likelihood estimator
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Sufficient statistic
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Conditional probability

For discrete random variables, the conditional probability mass
function of Y given the occurrence of the value x of X can be
written according to its definition as:

P(Y = y |X = x) =
P(Y = y ,X = x)

P(X = x)

For continuous random variables, the conditional probability
of Y given the occurrence of the value x of X has density
function

fY (y |X = x) =
fjoint(y , x)

f (x)
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Some observations

Basic estimation problem:

Given a density function f (x , θ) and a sample X1,X2, . . . ,Xn

Construct a statistic θ̂ = T (X1,X2, . . . ,Xn)
Different statistic t leads different estimate, different
accuracies

If, however, the distribution of t(X1,X2, . . . ,Xn) does not
depend on θ, then it is no good

Similarly, if the conditional probability

P(X1,X2, . . . ,Xn|T )

does not depend on θ, then this means that
T (X1,X2, . . . ,Xn) contained all the information to estimate θ
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Sufficient statistic

Definition

A statistic T = t(X1, . . . ,Xn) is said to be sufficient for making
inferences about a parameter θ if the joint distribution of
X1,X2, . . . ,Xn given that T = t does not depend upon θ for every
possible value t of the statistic T .
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Fisher-Neyman factorization theorem

Theorem

T is sufficient for if and only if nonnegative functions g and h can
be found such that

f (x1, x2, . . . , xn; θ) = g(t(x1, x2, . . . , xn), θ) · h(x1, x2, . . . , xn)

i.e. the joint density can be factored into a product such that one
factor, h does not depend on θ; and the other factor, which does
depend on θ, depends on x only through t(x).
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Jointly sufficient statistic

Definition

The m statistics T1 = t1(X1, . . . ,Xn), T2 = t2(X1, . . . ,Xn), . . .,
Tm = tm(X1, . . . ,Xn) are said to be jointly sufficient for the
parameters θ1, θ2, . . . , θk if the joint distribution of X1,X2, . . . ,Xn

given that
T1 = t1,T2 = t2, . . . ,Tm = tm

does not depend upon θ1, θ2, . . . , θk for every possible value
t1, t2, . . . , tm of the statistics.

MATH 450 Chapter 7: Point Estimation



Fisher-Neyman factorization theorem

Theorem

T1,T2, . . . ,Tm are sufficient for θ1, θ2, . . . , θk if and only if
nonnegative functions g and h can be found such that

f (x1, x2, . . . , xn; θ1, θ2, . . . , θk) = g(t1, t2, . . . , tm, θ1, θ2, . . . , θk)

· h(x1, x2, . . . , xn)
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Example 3

Let X1,X2, ...,Xn be a random sample from N (µ, σ2)

fX (x) =
1√
2πσ

e−
(x−µ)2

2σ2

Prove that

T1 = X1 + . . .+ Xn, T2 = X 2
1 + X 2

2 + . . .+ X 2
n

are jointly sufficient for the two parameters µ and σ.
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Example 4

Let X1,X2, ...,Xn be a random sample from a Gamma
distribution

fX (x) =
1

Γ(α)βα
xα−1e−x/β

where α, β is unknown.

Prove that

T1 = X1 + . . .+ Xn, T2 =
n∏

i=1

Xi

are jointly sufficient for the two parameters α and β.
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Information
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Fisher information

Definition

The Fisher information I (θ) in a single observation from a pmf or

pdf f (x ; θ) is the variance of the random variable U = ∂ log f (X ,θ)
∂θ ,

which is

I (θ) = Var

[
∂ log f (X , θ)

∂θ

]
Note: We always have E [U] = 0.
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Example

Problem

Let X be distributed by

x 0 1

f (x , θ) 1− θ θ

Compute I (X , θ).

Hint:

If x = 1, then f (x , θ) = θ. Thus

u(x) =
∂ log f (x , θ)

∂θ
=

1

θ

How about x = 0?
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Example

Problem

Let X be distributed by

x 0 1

f (x , θ) 1− θ θ

Compute I (X , θ).

We have

Var [U] = E [U2]− (E [U])2 = E [U2]

=
∑
x=0,1

U2(x)f (x , θ)

=
1

(1− θ)2
· (1− θ) +

1

θ2
· θ
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The Cramer-Rao Inequality

Theorem

Assume a random sample X1,X2, ...,Xn from the distribution with
pmf or pdf f (x , θ) such that the set of possible values does not
depend on θ. If the statistic T = t(X1,X2, ...,Xn) is an unbiased
estimator for the parameter θ, then

V (T ) ≥ 1

n · I (θ)
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Efficiency

Theorem

Let T = t(X1,X2, ...,Xn) is an unbiased estimator for the
parameter θ, the ratio of the lower bound to the variance of T is
its efficiency

Efficiency =
1

nI (θ)V (T )
≤ 1

T is said to be an efficient estimator if T achieves the CramerRao
lower bound (i.e., the efficiency is 1).

Note: An efficient estimator is a minimum variance unbiased
(MVUE) estimator.
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Large Sample Properties of the MLE

Theorem

Given a random sample X1,X2, ...,Xnfrom the distribution with
pmf or pdf f (x , θ) such that the set of possible values does not
depend on θ. Then for large n the maximum likelihood estimator θ̂
has approximately a normal distribution with mean θ and variance

1
n·I (θ) .

More precisely, the limiting distribution of
√

n(θ̂ − θ) is normal
with mean 0 and variance 1/I (θ).
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The Central Limit Theorem

Theorem

Let X1,X2, . . . ,Xn be a random sample from a distribution with
mean µ and variance σ2. Then, in the limit when n→∞, the
standardized version of X̄ have the standard normal distribution

lim
n→∞

P
(

X̄ − µ
σ/
√

n
≤ z

)
= P[Z ≤ z ] = Φ(z)
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Chapter 7: Summary
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Overview

7.1 Point estimate

unbiased estimator
mean squared error
bootstrap

7.2 Methods of point estimation

method of moments
method of maximum likelihood.

7.3 Sufficient statistic

7.4 Information and Efficiency

Large sample properties of the maximum likelihood estimator
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Point estimate

Definition

A point estimate θ̂ of a parameter θ is a single number that can be
regarded as a sensible value for θ.

population parameter =⇒ sample =⇒ estimate

θ =⇒ X1,X2, . . . ,Xn =⇒ θ̂
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Mean Squared Error

Measuring error of estimation

|θ̂ − θ| or (θ̂ − θ)2

The error of estimation is random

Definition

The mean squared error of an estimator θ̂ is

E [(θ̂ − θ)2]
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Bias-variance decomposition

Theorem

MSE (θ̂) = E [(θ̂ − θ)2] = V (θ̂) +
(

E (θ̂)− θ
)2

Bias-variance decomposition

Mean squared error = variance of estimator + (bias)2
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Unbiased estimators

Definition

A point estimator θ̂ is said to be an unbiased estimator of θ if

E (θ̂) = θ

for every possible value of θ.

Unbiased estimator

⇔ Bias = 0

⇔ Mean squared error = variance of estimator
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Example 1

Problem

Consider a random sample X1, . . . ,Xn from the pdf

f (x) =
1 + θx

2
− 1 ≤ x ≤ 1

Show that θ̂ = 3X̄ is an unbiased estimator of θ.
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Overview
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unbiased estimator
mean squared error
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7.2 Methods of point estimation

method of moments
method of maximum likelihood.

7.3 Sufficient statistic

7.4 Information and Efficiency

Large sample properties of the maximum likelihood estimator
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Method of moments: ideas

Let X1, . . . ,Xn be a random sample from a distribution with
pmf or pdf

f (x ; θ1, θ2, . . . , θm)

Assume that for k = 1, . . . ,m

X k
1 + X k

2 + . . .+ X k
n

n
= E (X k)

Solve the system of equations for θ1, θ2, . . . , θm
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Method of moments: Example 4

Problem

Suppose that for a parameter 0 ≤ θ ≤ 1, X is the outcome of the
roll of a four-sided tetrahedral die

x 1 2 3 4

p(x) 3θ
4

θ
4

3(1−θ)
4

(1−θ)
4

Suppose the die is rolled 10 times with outcomes

4, 1, 2, 3, 1, 2, 3, 4, 2, 3

Use the method of moments to obtain an estimator of θ.
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Maximum likelihood estimator

Let X1,X2, ...,Xn have joint pmf or pdf

fjoint(x1, x2, . . . , xn; θ)

where θ is unknown.

When x1, . . . , xn are the observed sample values and this
expression is regarded as a function of θ, it is called the
likelihood function.

The maximum likelihood estimates θML are the value for θ
that maximize the likelihood function:

fjoint(x1, x2, . . . , xn; θML) ≥ fjoint(x1, x2, . . . , xn; θ) ∀θ
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How to find the MLE?

Step 1: Write down the likelihood function.

Step 2: Can you find the maximum of this function?

Step 3: Try taking the logarithm of this function.

Step 4: Find the maximum of this new function.

To find the maximum of a function of θ:

compute the derivative of the function with respect to θ

set this expression of the derivative to 0

solve the equation
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Example 3

Let X1, . . . ,X10 be a random sample of size n = 10 from a
distribution with pdf

f (x) =

{
(θ + 1)xθ if 0 ≤ x ≤ 1

0 otherwise

The observed xi ’s are

0.92, 0.79, 0.90, 0.65, 0.86, 0.47, 0.73, 0.97, 0.94, 0.77

Question: Use the method of maximum likelihood to obtain
an estimator of θ.

MATH 450 Chapter 7: Point Estimation



Overview

7.1 Point estimate

unbiased estimator
mean squared error
bootstrap

7.2 Methods of point estimation

method of moments
method of maximum likelihood.

7.3 Sufficient statistic

7.4 Information and Efficiency
Large sample properties of the maximum likelihood estimator

MATH 450 Chapter 7: Point Estimation



Fisher-Neyman factorization theorem

Theorem

T is sufficient for if and only if nonnegative functions g and h can
be found such that

f (x1, x2, . . . , xn; θ) = g(t(x1, x2, . . . , xn), θ) · h(x1, x2, . . . , xn)

i.e. the joint density can be factored into a product such that one
factor, h does not depend on θ; and the other factor, which does
depend on θ, depends on x only through t(x).
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Fisher information

Definition

The Fisher information I (θ) in a single observation from a pmf or

pdf f (x ; θ) is the variance of the random variable U = ∂ log f (X ,θ)
∂θ ,

which is

I (θ) = Var

[
∂ log f (X , θ)

∂θ

]
Note: We always have E [U] = 0.
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The Cramer-Rao Inequality

Theorem

Assume a random sample X1,X2, ...,Xn from the distribution with
pmf or pdf f (x , θ) such that the set of possible values does not
depend on θ. If the statistic T = t(X1,X2, ...,Xn) is an unbiased
estimator for the parameter θ, then

V (T ) ≥ 1

n · I (θ)
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Large Sample Properties of the MLE

Theorem

Given a random sample X1,X2, ...,Xnfrom the distribution with
pmf or pdf f (x , θ) such that the set of possible values does not
depend on θ. Then for large n the maximum likelihood estimator θ̂
has approximately a normal distribution with mean θ and variance

1
n·I (θ) .

More precisely, the limiting distribution of
√

n(θ̂ − θ) is normal
with mean 0 and variance 1/I (θ).
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