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Abstract

We consider the ancestral state reconstruction problem where we need to

infer phenotypes of ancestors using observations from present-day species. For

this problem, we propose a multi-task learning method that uses regularized

maximum likelihood to estimate the ancestral states of various traits simulta-

neously. We then show both theoretically and by simulation that this method

improves the estimates of the ancestral states compared to the maximum like-

lihood method. The result also indicates that for the problem of ancestral

state reconstruction under the Brownian motion model, the maximum likeli-

hood method can be improved.

Keywords: ancestral state reconstruction, multi-task learning, maximum

likelihood estimator

1. Introduction1

Inferring phenotypes (values or states of a trait) of ancestral species using2

observations from present-day species is an important problem that lies at the3
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heart of evolutionary biology. This problem, usually called ancestral state re-4

construction, has many modern applications including inferring the origin of the5

HIV-1 pandemic in Central Africa in the 1920s (Faria et al., 2014; Gill et al.,6

2017), understanding the global circulation patterns of influenza A/H1N1 and7

B viruses (Bedford et al., 2015), and testing between two popular competing8

hypotheses (Anatolia and steppe) for the origin of the Indo-European languages9

(Bouckaert et al., 2012).10

One of the most popular models for ancestral state reconstruction is to as-11

sume a trait (or character) evolves along the branches of a phylogenetic tree12

according to a stochastic process. The observations at the leaves of this tree13

are the trait values of the present species while the ancestral state is the trait14

value at the root. In this model, a well-known approach for reconstructing the15

ancestral state is the maximum likelihood method, where we maximize the like-16

lihood of the observed trait values with respect to parameters that depict the17

ancestral state.18

In this paper, we are interested in reconstructing the ancestral states for19

multiple continuous traits concurrently. For continuous traits, the stochastic20

process that characterizes the traits’ evolution is usually assumed to follow a21

Brownian motion model (Felsenstein, 2004). If the maximum likelihood method22

is applied to each trait of the problem separately, we can construct the ancestral23

states of the traits independently. However, in this work, we theoretically show24

that simultaneously reconstructing the ancestral states of several continuous25

traits can be improved by multi-task learning using the regularized maximum26

likelihood method.27

Multi-task learning is an important machine learning framework that aims28

to improve the learning performance by combining data from many tasks. It has29

been applied successfully in many areas including natural language processing30

(Dong et al., 2015; Lu et al., 2016), computer vision (Li et al., 2010; Zhang et al.,31

2012), and feature selection (Argyriou et al., 2006; Zhang et al., 2006). Among32

the methods for multi-task learning, regularization techniques are perhaps the33

simplest and most popular (Evgeniou & Pontil, 2004; Feldman et al., 2014; Lu34
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et al., 2016). The idea behind this technique is to use a penalty term to pull the35

learned models closer to each other. In this work, we show this regularization36

method improves the ancestral state reconstruction for evolutionary data.37

In summary, our work makes the following novel contributions to the an-38

cestral state reconstruction problem. First, we propose a regularized maximum39

likelihood method to simultaneously reconstruct the ancestral states of several40

continuous traits from observations. In essence, this method pulls the infor-41

mation from different traits together using an `2-penalty term. We then prove42

theoretically that the proposed method helps to improve the accuracy of the43

ancestral states’ estimates for both traits that belong to the same set of species44

or to different sets of species. Our simulation on real phylogenetic trees also45

confirms the theoretical findings in the paper. The results indicates that for the46

problem of ancestral state reconstruction under the Brownian motion model,47

the maximum likelihood method can be improved.48

2. Ancestral State Reconstruction under the Brownian Motion Model49

In evolutionary biology, living species are related to each other and share50

descendants from a common ancestor. This relatedness is depicted by a phylo-51

genetic tree whose leaves represent the species at the present time and whose52

root represents the common ancestor of these species. In this tree, each inter-53

nal node corresponds to a speciation event at which a population splits into54

two distinct populations and edge lengths of the tree measure the evolutionary55

time between speciation events. In practice, researchers reconstruct phyloge-56

netic trees from DNA sequences and calibrate these trees (i.e., translating edge57

lengths into absolute time) using fossils and geological events. Figure 1 visual-58

izes a calibrated 4507-species mammal tree from Bininda-Emonds et al. (2007)59

that is constructed from molecular data.60

Ancestral state reconstruction is the problem of estimating the trait value61

of the common ancestor from the trait values of present-day species. This is62

a useful task for understanding the evolutionary history of living organisms.63
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Figure 1: The calibrated 4507-species mammal tree from Bininda-Emonds et al. (2007).

For example, Gill et al. (2017) considered geographical traits (longitude and64

latitude) to study the spread of HIV-1 in Central Africa and by reconstructing65

the ancestral states of these traits, they are able to infer the origin of this66

pandemic.67

One mathematical approach for the ancestral state reconstruction problem68

is to model the evolution of a trait along a phylogenetic tree by a stochastic69

process. In this paper, we focus on ancestral state reconstruction of continuous70

traits and for this setting, the Brownian motion (BM) model is one of the most71

commonly used approaches. This model assumes a trait evolves along each72

branch of the phylogenetic tree according to a BM. At each speciation event73

(i.e., at each node of the phylogenetic tree), the BM splits into several processes74

which evolve independently along descendant edges (see Ané (2008) for more75

details).76

Under this BM model, the trait value at the root of the phylogenetic tree77

(that is, the ancestral state) is the starting value µ of the BM. The observed78

trait values Y ∈ Rn at the leaves, where n is the number of leaves or species,79

follow the Normal distribution N (µ1, σ2V) where 1 is an all-ones vector of80

length n, σ2 is the variance of the BM, and V = [vij ]1≤i,j≤n is the phylogenetic81
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correlation matrix between species. Here, vij is the distance (i.e., total edge82

lengths) from the root to the most recent common ancestor of species i and j.83

Applications of the BM model include modeling flower size of Euphorbiaceae84

species (Davis et al., 2007), body mass of mammals (Cooper & Purvis, 2010),85

and chromosome number of primates (Baum et al., 2016).86

A popular method for estimating the ancestral state µ of this trait is the

maximum likelihood (ML) approach, which estimates µ and σ using the follow-

ing formulae:

(µ̂ML, σ̂ML) = argmax
µ,σ

logP(Y | µ, σ2)

= argmax
µ,σ

{
− (µ1−Y)>V−1(µ1−Y)

2σ2
− n

2
log(σ2)

}
. (2.1)

For all σ, the above optimization problem can be solved in closed form. That

is,

µ̂ML = (1>V−11)−1(1>V−1Y), (2.2)

σ̂ML =

√
1

n
(µ̂ML1−Y)>V−1(µ̂ML1−Y). (2.3)

Note that µ̂ML does not depend on σ. To measure the quality of an estimator,

we often use the mean squared error (MSE). The MSE of an estimator µ̂ is

defined as MSE(µ̂) = E(µ̂− µ)2. For the ML estimator above, its MSE is:

MSE(µ̂ML) =
σ2

1>V−11
(2.4)

where σ2 is the true variance of the BM model.87

3. Multi-task Ancestral State Reconstruction88

In this paper, we consider the problem of reconstructing the ancestral states89

of m continuous traits simultaneously under the BM model from m vectors of90

trait values {Yi}mi=1. We refer to this problem as the multi-task ancestral state91

reconstruction problem. A naive approach to this problem would apply the ML92

method above for each trait independently or attempt to estimate the ancestral93
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states of multiple traits jointly under the multivariate BM model using ML94

method. However, we note that the joint ML estimators are the same as the95

ML estimators when we estimate the ancestral state of each trait separately.96

Indeed, let X be the n × m matrix of trait values for n species and m traits97

(that is, the i-th column is the trait values Yi of the trait i-th), then Revell98

& Harmon (2008) pointed out that the ML estimators of µ = (µ1, µ2, . . . , µm)99

under the multivariate BM is µ̂ML = (1>V−11)−1(1>V−1X). Hence, µ̂ML
i =100

(1>V−11)−1(1>V−1Yi), which is exactly the ML estimator for µi when we101

estimate it separately.102

In this work, we propose a method to estimate all the m ancestral states

simultaneously using a regularized maximum likelihood objective. We will also

prove that our method can improve the estimators of the ancestral states com-

pared to the naive ML method. More specifically, we propose the following

multi-task estimator for the problem that estimates the ancestral states by:

(µ̂1, µ̂2, . . . , µ̂m) = argmax
µ1,µ2,...,µm

m∑
i=1

logP(Yi | µi, 1)− λ

2

 ∑
1≤k,l≤m

(µk − µl)2
 ,
(3.1)

where µi is the parameter representing the ancestral state of trait i and λ

is a non-negative parameter that balances the importance of the regularizer

term
∑

1≤k,l≤m (µk − µl)2. We call λ the regularizer parameter. Note that for

simplicity, we have assumed the BMs for all traits have unit variance, i.e., σ2
i = 1

for all i = 1, 2, . . . ,m. In practice, if {σi}mi=1 are known, this assumption can be

satisfied by standardizing the data using:

Y′i =
Yi

σi
, ∀i = 1, 2, . . . ,m. (3.2)

If {σi}mi=1 are unknown, we can standardize the data using any consistent esti-103

mator of {σi}mi=1, e.g., the ML estimators {σ̂ML
i }mi=1.104

Objective functions similar to (3.1) were also used by Feldman et al. (2014)105

for independent Gaussian data and by Lu et al. (2016) for natural language106

data. The idea of using a regularized maximum likelihood objective to estimate107

the parameters of different models jointly is commonly used in machine learning108
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for the multi-task learning problem (Evgeniou & Pontil, 2004). However, these109

multi-task learning algorithms are usually applied to highly complex models110

that render their theoretical analysis difficult. Our work, on the other hand, is111

able to provide theoretical guarantees for the estimators under the BM model.112

The main idea of the additional regularizer term is to shrink the estimators113

together. As a result, the estimators are slightly biased but can have smaller114

variances and MSE compared to the ML estimators (Figure 2).115

Multi-task

learning

estimator 

(shrinking 

estimators 

together)

Input data

(a) Multi-task learning method

Maximum 

likelihood

estimator

Maximum 

likelihood

estimator

Input data

(b) Maximum likelihood method

Figure 2: Schematic figure illustrating the distinction between the proposed multi-task learn-

ing method (a) and the maximum likelihood (ML) methods (b). We want to estimate the

ancestral states µ1 and µ2 of two traits at the roots (blue and red nodes) of two or more

phylogenetic trees (which could be the same or different). The ML estimator of each trait

is unbiased and follows Gaussian distributions. Our multi-task learning method shrinks the

estimators together, which make them slightly biased but can reduce the mean squared error

(bias-variance tradeoff).

In the following, we shall prove that the estimators obtained from (3.1) are116

better than normal ML estimators in terms of the MSE under two scenarios:117

(1) when the traits of interest are from species of the same phylogenetic tree118

and (2) when the traits are from species of two different phylogenetic trees. The119

insights from (2) can also be extended to more than two phylogenetic trees,120

although we omit it here for simplicity.121

3.1. Traits From One Phylogenetic Tree122

In this scenario, we consider multiple traits of a set of species coming from123

one phylogenetic tree. Since all traits evolve on the same phylogenetic tree, they124
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have the same phylogenetic correlation matrix V. Under this setting, we can125

obtain an analytical solution for (3.1) as follows.126

First, since the likelihood functions are Gaussian, we can rewrite (3.1) as:

(µ̂1, µ̂2, . . . , µ̂m) = argmax
µ1,µ2,...,µm

{
−

m∑
i=1

(Yi − µi1)>V−1(Yi − µi1)

− λ
[ ∑
1≤k,l≤m

(µk − µl)2
]}
. (3.3)

Take the partial derivatives of the objective function above w.r.t. each µi

and set them to 0. We then obtain (µ̂1, µ̂2, . . . , µ̂m) as a solution of the following

system of equations:

(1>V−11)µi − 1>V−1Yi + 2λmµi − 2λ

m∑
k=1

µk = 0, for i = 1, 2, . . . ,m. (3.4)

Taking the summation of all equations in (3.4), we have:

(1>V−11)

m∑
i=1

µi −
m∑
i=1

1>V−1Yi = 0. (3.5)

Thus,
m∑
i=1

µi =

m∑
i=1

1>V−1Yi

1>V−11
. (3.6)

From (3.4) and (3.6), we obtain the solution for this scenario:

µ̂i =
1>V−1Yi

1>V−11 + 2λm
+

2λ(1>V−11)−1
∑m
k=1 1

>V−1Yk

1>V−11 + 2λm
, for i = 1, 2, . . . ,m.

(3.7)

We note that the traits may not be independent since they come from species127

at the leaves of the same phylogenetic tree. Let ckl be the correlation between128

trait k and trait l. The covariance between the observations Yk and Yl is cklV.129

We normally assume that different traits are not perfectly positive correlated;130

that is, ckl < 1 if k 6= l. It is worth noticing that our results hold even when131

traits are negative correlated (ckl < 0). Moreover, the improvement of our132

method compared to the ML estimators actually increases in such scenarios133

(see equation A.1).134
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Denote

λs =
(m− 1)(1−maxk 6=l ckl)

(m− 1)2(maxi{µi} −mini{µi})2 +
[
m2 −

(∑
k,l ckl

)]
(1>V−11)−1

.

(3.8)

We have the following theorem which proves the estimates in (3.7) using135

our method are better than normal ML estimates in terms of the MSE for136

appropriate values of the regularizer parameter λ (see section Appendix A for137

proof of this theorem).138

Theorem 3.1. Simultaneously reconstructing ancestral states of m traits from

species of the same phylogenetic tree using (3.7) is better than reconstructing

them separately using ML estimators, that is MSE(µ̂ML
i ) > MSE(µ̂i) for all

i = 1, 2, . . . ,m, when

λ ∈

(0,+∞) if (maxi{µi} −mini{µi})2 ≤
m2−(

∑
k,l ckl)

(m−1)21>V−11

(0, λs) otherwise

. (3.9)

139

We remark that the condition

(max
i
{µi} −min

i
{µi})2 ≤

m2 −
(∑

k,l ckl

)
(m− 1)21>V−11

(3.10)

means the ancestral states {µi}mi=1 of these m traits are concentrated. Although

under this condition, the multi-task estimator improves the ancestral state re-

construction with any λ > 0, we often do not know if this condition is satisfied in

practice. So, in this case, we suggest to use λ = λ̂s/2, where λ̂s is the following

estimator of λs:

λ̂s =
(m− 1)(1−maxk 6=l ĉkl)

(m− 1)2(maxi{µ̂ML
i } −mini{µ̂ML

i })2 +
[
m2 −

(∑
k,l ĉkl

)]
(1>V−11)−1

with the empirical estimation ĉkl of the correlation ckl evaluated by:

ĉkl =
(Yk − 1>Yk/n)>(Yl − 1>Yl/n)√

(Yk − 1>Yk/n)>(Yk − 1>Yk/n)
√

(Yl − 1>Yl/n)>(Yl − 1>Yl/n)
,

for k, l ∈ {1, 2, . . . ,m} and n is the number of species (the length of Yk).140
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In our simulations in section 4, we will show that if λ is large and the141

condition (3.10) does not hold, the multi-task estimator can be worse than the142

ML method.143

In the above formulas, ĉkl is the sample correlation coefficient estimated144

from the trait values. This is a well-known estimate that has been implemented145

in many statistical softwares such as R. Using these coefficients and the ML146

estimators, we can compute an estimate λ̂s of λs and set λ = λ̂s/2 so that it is147

small enough. We emphasize here that our method and the ML method both148

require O(nm) time to compute using the tree traversal algorithm proposed149

by Ho & Ané (2014). So, computing the ML solution to estimate λ does not150

increase the complexity of our method asymptotically.151

3.2. Traits From Two Different Phylogenetic Trees152

The second scenario we consider is when we have traits from two different153

sets of species that come from two different phylogenetic trees. For simplicity, we154

consider only two traits in this section. However, we note that this consideration155

is still useful, especially when we want to use an old data set to improve the156

reconstruction of ancestral states from a new data set. The idea in this section157

can also be used for more than two traits.158

Since we have two different phylogenetic trees, there are two different phy-

logenetic correlation matrices V1 and V2. In this case, (3.1) becomes:

(µ̂1, µ̂2) = argmin
µ1,µ2

{
(Y1 − µ11)>V−11 (Y1 − µ11)

+ (Y2 − µ21)>V−12 (Y2 − µ21) + 2λ(µ1 − µ2)2
}
. (3.11)

Setting the partial derivatives of this objective w.r.t. µ1 and µ2 to zero, we

obtain (µ̂1, µ̂2) as a solution of the following system of equations:
µ1 − 1>V−1

1 Y1

1>V−1
1 1

+ 2λ
1>V−1

1 1
(µ1 − µ2) = 0

µ2 − 1>V−1
2 Y2

1>V−1
2 1

+ 2λ
1>V−1

2 1
(µ2 − µ1) = 0

. (3.12)
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By subtracting these two equations, we have:

µ1 − µ2 =

(
1>V−11 Y1

1>V−11 1
− 1>V−12 Y2

1>V−12 1

)/(
1 +

2λ

1>V−11 1
+

2λ

1>V−12 1

)
.

From this equation and (3.12), we obtain the solution for this scenario:

µ̂1 =
1>V−11 Y1

1>V−11 1
−

2λ

1>V−11 1

(
1>V−11 Y1

1>V−11 1
− 1>V−12 Y2

1>V−12 1

)/(
1 +

2λ

1>V−11 1
+

2λ

1>V−12 1

)
,

µ̂2 =
1>V−12 Y2

1>V−12 1
−

2λ

1>V−12 1

(
1>V−12 Y2

1>V−12 1
− 1>V−11 Y1

1>V−11 1

)/(
1 +

2λ

1>V−11 1
+

2λ

1>V−12 1

)
.

(3.13)

Denote λd =
1

(µ1 − µ2)2 + (1>V−11 1)−1 + (1>V−12 1)−1
.159

We have the following theorem which proves the estimates in (3.13) are160

better than normal ML estimates in terms of the MSE for appropriate values of161

the regularizer parameter λ (see section Appendix B for proof of this theorem).162

Theorem 3.2. Simultaneously reconstructing ancestral states of two traits from

species of two different phylogenetic trees using (3.13) is better than reconstruct-

ing them separately using ML estimators, that is MSE(µ̂ML
i ) > MSE(µ̂i) for

i = 1, 2, when

λ ∈

(0,+∞) if (µ1 − µ2)2 ≤ (1>V−11 1)−1 + (1>V−12 1)−1

(0, λd) otherwise

. (3.14)

163

As with the previous scenario, we remark that the condition

(µ1 − µ2)2 ≤ (1>V−11 1)−1 + (1>V−12 1)−1 (3.15)

means the two ancestral states are similar and our method improves the an-

cestral state reconstruction with any λ > 0. In practice, since we often do not

know whether condition (3.15) is satisfied, we also suggest to use:

λ =
λ̂d
2

=
1

2[(µ̂ML
1 − µ̂ML

2 )2 + (1>V−11 1)−1 + (1>V−12 1)−1]
. (3.16)
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Since m = 2, our method and the ML method both require O(n) time to164

compute the solutions using the tree traversal algorithm (Ho & Ané, 2014).165

As another remark, our theoretical results in theorems 3.1 and 3.2 are useful166

and perhaps surprising. First, they point out that if the considered traits are167

related (i.e., (3.10) and (3.15) hold), the multi-task estimator is always better168

than ML for any value of the regularizer parameter λ. On the other hand, if169

they are not related, there still exists a small range of λ values that the multi-170

task estimator is better than ML, but this range would get smaller if the traits171

become more unrelated (for example, when maxi{µi} −mini{µi} gets larger).172

Nevertheless, there always exists some value of λ such that our method is better173

than ML, regardless of the relatedness between the traits. Thus, this implies174

the following corollary.175

Corollary 3.1. For the problem of ancestral state reconstruction under the176

Brownian motion model, the maximum likelihood method can be improved.177

The argument for this corollary is as follows: given a problem of reconstruct-178

ing ancestral states of any trait on a fixed phylogenetic tree under the Brownian179

motion model, we can improve the accuracy of the maximum likelihood esti-180

mator by simultaneously reconstructing the ancestral states of interest and the181

ancestral states of a fixed template trait using Equation (3.13). The template182

trait can be chosen arbitrarily, as long as the evolution of the trait follows the183

Brownian motion model and can be created by simulating a BM trait along a184

fixed tree.185

This surprising result reinforces a popular statistical observation, referred186

to as Stein’s paradox, that leveraging data from multiple tasks can yield better187

performance over learning from each task independently, even if the underlying188

random variables come from seemingly unrelated distributions (Stein et al.,189

1956; Feldman et al., 2012). Most notably, Stein et al. (1956) showed that it is190

better (using MSE as the measure of accuracy) to estimate each of the means of191

multiple Gaussian random variables using data sampled from all of them. Our192

paper shows that such results still hold true for trait evolution on trees.193
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4. Simulations194

We use simulations to illustrate the performance of our proposed multi-195

task learning method. We implement our method in R and apply the tree196

traversal algorithm proposed by Ho & Ané (2014) (implemented in the R package197

phylolm) to avoid inverting the phylogenetic correlation matrices. This package198

also provides a function for simulating traits along a phylogenetic tree under199

the BM model and a function for estimating the ancestral states using the ML200

estimators.201

4.1. Comparing Multi-task and Maximum Likelihood Estimators202

In this simulation, we compare the performance of the multi-task estimator203

with the standard ML method. We use the rTrait function in the R package204

phylolm to generate data according to the scenarios considered in this paper:205

• Traits from the species of one phylogenetic tree: we simulate three inde-206

pendent continuous traits along the 4507-species mammal tree in Figure207

1 under the BM model with (µi, σ
2
i ) = (0, 1), (1, 1), (2, 2) for i = 1, 2, 3208

respectively.209

• Traits from the species of two different phylogenetic trees: we simulate210

one trait along the mammal tree in Figure 1 under the BM model with211

(µ1, σ
2
1) = (0, 1) and another trait along the 140-species phylogeny of ants212

in Figure 3 under the BM model with (µ2, σ
2
2) = (2, 2).213

The traits are standardized using the ML estimators Y′i = Yi/σ̂
ML
i for214

i = 1, 2, . . . ,m, as suggested in section 3. Then {µ̂′i}mi=1 are computed for215

{Y′i}mi=1 via (3.7) with λ = λ̂s/2 in the first scenario and via (3.13) with216

λ = λ̂d/2 in the second one. After that, we scale back {µ̂′i}mi=1 to recover217

the estimated ancestral states {µ̂i}mi=1 by µ̂i = σ̂ML
i µ̂′i for all i = 1, 2, . . . ,m.218

We also use the function phylolm to compute the ML estimators {µ̂ML
i }mi=1 for219

comparison. This procedure is repeated 1, 000 times and the MSE is estimated220

by the empirical MSE. Table 1 summarizes the results of this simulation.221
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Figure 3: The 140-species phylogeny of ants from Moreau et al. (2006).

Compared to the ML method, our method returns a slightly biased esti-222

mators but reduces the MSE by 20% and the standard deviation by 10% for223

mammals. For ants, our method reduces the MSE by 12% and the standard de-224

viation by 7%. This shows the proposed multi-task learning procedure improves225

the accuracy of ancestral state reconstruction.226

4.2. Effect of the Regularizer Parameter λ227

In this second simulation, we aim to investigate the behavior of our method228

as λ varies regarding to the conditions (3.10) and (3.15). We simulate two traits229

evolving independently along the mammal tree under the BM model with two230

settings:231

• Condition (3.10) holds: (µ1, σ
2
1) = (0, 1) and (µ2, σ

2
2) = (2, 2).232

• Condition (3.10) does not hold: (µ1, σ
2
1) = (0, 1) and (µ2, σ

2
2) = (16, 2).233

In both settings, we reconstruct the ancestral states using (3.7) with λ =234

0, 1.25×10−3, 2.5×10−3, 5×10−3, 7.5×10−3, 10−2, 2×10−2, and 3×10−2.235

Note that λ = 0 corresponds to the ML method. To estimate the MSEs, we also236

repeat this procedure 1, 000 times. Figure 4(a) shows that when the condition237

(3.10) holds, our method outperforms the ML method for all λ. On the other238
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Scenario Same set of species Different sets of species

Species Mammals Mammals Ants

Trait 1 2 3 1 2

(µi, σ
2
i ) (0, 1) (1, 1) (2, 2) (0, 1) (2, 2)

MSE 33.59 33.22 65.68 34.54 31.58

ML Mean -0.1 0.99 2 -0.34 1.97

Sd 5.63 5.73 8.02 5.63 5.44

MSE 27.31 27.15 52.84 25 27.5

Multi-task Mean 0.04 0.96 1.85 -0.08 1.8

Sd 5.07 5.17 7.19 4.77 5.08

Table 1: Estimated MSEs, means and standard deviations (Sd) of multi-task learning and

ML method for reconstructing ancestral states.

hand, when the condition (3.10) does not hold, our method only outperforms239

the ML method for small λ (Figure 4(b)).240

We also repeat the simulation for condition (3.15) using the mammal tree241

for the first trait (µ1, σ
2
1) and the ant tree for the second trait (µ2, σ

2
2) in the242

following two settings:243

• Condition (3.15) holds: (µ1, σ
2
1) = (0, 1) and (µ2, σ

2
2) = (2, 2).244

• Condition (3.15) does not hold: (µ1, σ
2
1) = (0, 1) and (µ2, σ

2
2) = (16, 2).245

In these cases, our method behaves similarly to the simulation for the con-246

dition (3.10) (see Figures 4(c) and 4(d)). The results show that it is necessary247

to be conservative when choosing λ. The simulations also suggest that the gain248

from using the multi-task estimator is larger when the condition (3.10) or (3.15)249

is satisfied.250
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(a) Condition (3.10) holds.
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(b) Condition (3.10) does not hold.
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(c) Condition (3.15) holds.
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(d) Condition (3.15) does not hold.

Figure 4: MSEs of the multi-task learning method with respect to λ. Note that λ = 0 is

the ML estimators. For the first trait (red), (µ1, σ2
1) = (0, 1). For the second trait (blue),

(µ2, σ2
2) = (2, 2) in 4(a), and 4(c), and (µ2, σ2

2) = (16, 2) in 4(b) and 4(d).

5. Discussion and Conclusion251

Our paper proposed and analyzed a new multi-task estimator for ancestral252

state reconstruction. This estimator uses the regularized maximum likelihood253

method to reconstruct the ancestral states of multiple traits simultaneously. Our254

theoretical results show the advantage of the proposed method compared to the255

usual independent maximum likelihood approach for the problem. We confirm256

our theories using several simulated data sets from the phylogenies of mammals257

and ants with known ancestral states. Our multi-task learning method provides258

slightly biased estimators but can reduce their standard deviations, leading to259

better MSEs compared to the ML estimators. The simulations also verify that260

our method always outperforms ML method when the regularizing parameter261

λ is small enough.262

The idea in this paper can also be applied to other trait evolutionary models263

such as the phylogenetic two-state model (see e.g. Li et al., 2008), the phyloge-264

netic threshold model (see e.g. Felsenstein, 2011), and the Ornstein-Uhlenbeck265

model (see e.g. Ho & Ané, 2013). However, the theoretical approach in this266
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paper relies heavily on the Gaussian models. Therefore, extending our results267

to non-Gaussian models is not straightforward. On the other hand, while we268

only consider the `2-penalty in our framework, the shrinkage effect has been269

observed on a wide class of penalty functions. For that reason, the same theo-270

retical results might hold for other penalties such as `1 and SCAD (Fan & Li,271

2001).272

Our method can also be applied to reconstruct the state at any internal273

node by re-rooting the tree to that node. Note that this re-rooting technique,274

which has been applied for the ML estimators (see Goolsby, 2017, and the ref-275

erences therein), is appropriate because the Brownian motion is time-reversible.276

Therefore, one must be cautious when using the technique for other models.277

We note that in the context of ancestral state reconstruction, the accuracy278

of an ML estimator depends on the structure of the tree rather than the sample279

size (number of tips). For example, Ané (2008) introduces the notion of effective280

sample size, which depends on the tree, to measure how much information is281

contained in a given data set. Similarly, the accuracy of our method depends282

on the structure of the tree and the correlation between traits.283

Acknowledgments284

LSTH was supported by startup funds from Dalhousie University, the Canada285

Research Chairs program, and the Natural Sciences and Engineering Research286

Council of Canada (NSERC) Discovery Grant RGPIN-2018-05447. CVN was287

supported by EPSRC grant EP/M0269571.288

17



Appendix A. Proof of Theorem 3.1289

For i = 1, 2, . . . ,m, we can compute the MSE of µ̂i as follows:

MSE(µ̂i) = (Eµ̂i − µi)2 + Var(µ̂i)

=
4λ2(

∑m
k=1 µk −mµi)2

(1>V−11 + 2λm)2

+
(1>V−11)2 + 4λ2

(∑
k,l ckl

)
+ 4λ1>V−11 (

∑m
k=1 cik)

1>V−11(1>V−11 + 2λm)2
.

Recall that MSE(µ̂ML
i ) = (1>V−11)−1. Thus, we have:

MSE(µ̂ML
i )−MSE(µ̂i) =

4λ1>V−11[m− (
∑m
k=1 cik)]

1>V−11(1>V−11 + 2λm)2

+
4λ2

[
m2 − 1>V−11(

∑m
k=1 µk −mµi)2 −

(∑
k,l ckl

)]
1>V−11(1>V−11 + 2λm)2

. (A.1)

Note that: m−

(
m∑
k=1

cik

)
≥ (m− 1)(1−max

k 6=l
ckl) > 0.290

Therefore, if (max
i
{µi} −min

i
{µi})2 ≤

m2 −
(∑

k,l ckl

)
(m− 1)21>V−11

, then

m2 − 1>V−11(

m∑
k=1

µk −mµi)2 −

∑
k,l

ckl

 ≥ 0.

Thus, MSE(µ̂ML
i ) > MSE(µ̂i) for every λ > 0.291

Otherwise, MSE(µ̂ML
i ) > MSE(µ̂i) when

λ <
1>V−11(m− 1)(1−maxk 6=l ckl)

1>V−11(
∑m
k=1 µk −mµi)2 +

(∑
k,l ckl

)
−m2

.

We also notice that λs ≤
1>V−11(m− 1)(1−maxk 6=l ckl)

1>V−11(
∑m
k=1 µk −mµi)2 +

(∑
k,l ckl

)
−m2

for292

all i = 1, 2, . . . ,m.293

Thus, the theorem holds.294

Appendix B. Proof of Theorem 3.2295

From (3.13), we have:

(Eµ̂1 − µ1)2 =
4λ2(µ1 − µ2)2

(1>V−11 1)2

/(
1 +

2λ

1>V−11 1
+

2λ

1>V−12 1

)2

.
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Note that

µ̂1 =

[(
1 +

2λ

1>V−12 1

)
1>V−11 Y1

1>V−11 1
+

2λ

1>V−11 1

1>V−12 Y2

1>V−12 1

]/
(

1 +
2λ

1>V−11 1
+

2λ

1>V−12 1

)
and Y1 is independent of Y2. Hence,

Var(µ̂1) =

[(
1 +

2λ

1>V−12 1

)2
1

1>V−11 1
+

4λ2

(1>V−11 1)2
1

1>V−12 1

]/
(

1 +
2λ

1>V−11 1
+

2λ

1>V−12 1

)2

.

Therefore, we have:

MSE(µ̂1) = (Eµ̂1 − µ1)2 + Var(µ̂1)

=

[
4λ2(µ1 − µ2)2

(1>V−11 1)2
+

(
1 +

2λ

1>V−12 1

)2
1

1>V−11 1
+

4λ2

(1>V−11 1)2
1

1>V−12 1

]/
(

1 +
2λ

1>V−11 1
+

2λ

1>V−12 1

)2

.

Recall that MSE(µ̂ML
1 ) = (1>V−11 1)−1. So, MSE(µ̂ML

1 ) > MSE(µ̂1) is equiv-

alent to:

4λ2(µ1 − µ2)2

1>V−11 1
+

(
1 +

2λ

1>V−12 1

)2

+
4λ2

(1>V−11 1)(1>V−12 1)
<(

1 +
2λ

1>V−11 1
+

2λ

1>V−12 1

)2

,

which means

λ(µ1 − µ2)2 <
λ

1>V−11 1
+

λ

1>V−12 1
+ 1.

Therefore, we conclude that if (µ1 − µ2)2 ≤ (1>V−11 1)−1 + (1>V−12 1)−1,296

then MSE(µ̂ML
1 ) > MSE(µ̂1) for any λ > 0.297

Otherwise, if λ <
1

(µ1 − µ2)2 − (1>V−11 1)−1 − (1>V−12 1)−1
, then we also298

have MSE(µ̂ML
1 ) > MSE(µ̂1).299

The above argument can also be applied for µ̂2, which completes the proof.300
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