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Week 1 · · · · · ·• Chapter 1: Axioms of probability

Week 2 · · · · · ·•
Chapter 3: Conditional probability and
independence

Week 4 · · · · · ·• Chapters 4, 6: Random variables

Week 9 · · · · · ·• Chapter 5, 7: Special distributions

Week 10 · · · · · ·• Chapters 8, 9, 10: Bivariate and
multivariate distributions

Week 12 · · · · · ·• Chapter 11: Limit theorems

Probability Theory and Simulation Methods



Function of a random variable
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Distribution function

For continuous random variable:

F(t) = P(X ≤ t) =
∫
(−∞,t]

f(x)dx

=

∫ t

−∞

f(x)dx
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Distribution function

For continuous random variable:

P(a ≤ X ≤ b) =
∫ b

a
f(x) dx = F(b) − F(a)

Moreover:
f(x) = F ′(x)
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Function of a random variable: example

Problem
Let X be a continuous random variable with the probability density
function

f(x) =

 2
x2 if 1 < x < 2

0 elsewhere

Find the density functions of Y = X3.

Idea:

Fixed t , write down FY (y) = P(Y ≤ y) and represent it in term
of f

Take the derivative with respect to y to get the density function
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Example 1

Recall that

FX(t) = P(X ≤ t) =


0 if t ≤ 1

2 − 2
t if 1 < t < 2

1 if t ≥ 2

Then
FY (y) = P[Y ≤ y] = P[X3 ≤ y] = P[X ≤ y1/3]

=


0 if y1/3 ≤ 1

2 − 2
y1/3 if 1 < y1/3 < 2

1 if y1/3 ≥ 2
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Example 1

We have

FY (y) =


0 if y ≤ 1

2 − 2
y1/3 if 1 < y < 8

1 if y ≥ 8

Take derivative with respect to y

fY (y) = F ′Y (y) =

2
3

1
y4/3 if 1 < y < 8

0 elsewhere
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Example 2

Problem
Let X be a continuous random variable with the probability density
function

f(x) =

2e−2x if x > 0

0 elsewhere

Find the density functions of Y =
√

X.
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Bernoulli and Binomial random variables
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Bernoulli trial

Two outcomes: one outcome is usually called a success,
denoted by s; the other outcome is called a failure, denoted
by f

Sample space: {s, f }

The random variable defined by X(s) = 1 and X(f) = 0 is
called a Bernoulli random variable

The pmf of a Bernoulli random variable is

p(x) =


p if x = 1

1 − p if x = 0

0 elsewhere

where p is a parameter, referred to as the probability of a
success
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Problem

Problem
Consider a Bernoulli random variable X with pmf

p(x) =


p if x = 1

1 − p if x = 0

0 elsewhere

Compute E(X) and Var(X) as functions of p.
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Independent events

Definition
The set of events {A1,A2, . . . ,An} is called independent if for every
subset {Ai1 ,Ai2 , . . . ,Aik }, k ≥ 2, of {A1,A2, . . . ,An},

P(Ai1Ai2 , . . .Aik ) = P(Ai1)P(Ai2) . . .P(Aik ).
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A sequence of independent Bernoulli trials

Definition
Let X1,X2, . . . ,Xn be a sequence of Bernoulli random variables.
If, for all ji ∈ {0, 1}, the sequence of events

{X1 = j1}, {X2 = j2}, . . . , {Xn = jn}

are independent, we say that {X1,X2, . . . ,Xn} are independent.
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Binomial random variables

Definition
If n Bernoulli trials all with probability of success p are performed
independently, then X , the number of successes is called a
binomial random variable with parameters n and p.

The set of possible values of X is {0, 1, 2, ..., n}

What is the pmf of X?

Probability Theory and Simulation Methods



Combinations
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pmf of binomial random variables
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Example 1

Example

A restaurant serves 8 entrees of fish, 12 of beef, and 10 of poultry.
If customers select from these entrees randomly, what is the
probability that two of the next four customers order fish entrees?
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Example 2: non-transitive die

Suppose you are on the
orange team, and you
have to play with the blue
team

Three rounds of dice are
played

What is the probability that
you win exactly 2 rounds?

Probability Theory and Simulation Methods


