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Week 1 · · · · · ·• Chapter 1: Axioms of probability

Week 2 · · · · · ·•
Chapter 3: Conditional probability and
independence

Week 4 · · · · · ·• Chapters 4, 6: Random variables

Week 9 · · · · · ·• Chapter 5, 7: Special distributions

Week 10 · · · · · ·• Chapters 8, 9, 10: Bivariate and
multivariate distributions

Week 12 · · · · · ·• Chapter 11: Limit theorems
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Special continuous distributions
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Chapter 6: Special continuous distributions

Uniform random variables

Normal random variables

Exponential random variables
Other discrete random variables

Gamma distribution
Beta distributions
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Distribution function

For continuous random variable:

F(t) = P(X ≤ t) =

∫
(−∞,t]

f(x)dx

=

∫ t

−∞

f(x)dx
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Distribution function

For continuous random variable:

P(a ≤ X ≤ b) =

∫ b

a
f(x) dx = F(b) − F(a)

Moreover:
f(x) = F ′(x)

Probability Theory and Simulation Methods



Uniform random variables
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Normal random variables
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N(µ, σ2)

E(X) = µ,Var(X) = σ2
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Standard normal distribution

If Z is a normal random variable with parameters µ = 0 and
σ = 1, then the pdf of Z is

f(z) =
1
√

2π
e−

z2
2

and Z is called the standard normal distribution

E(Z) = 0, Var(Z) = 1

The cumulative distribution function of the standard normal
distribution is:

Φ(z) = P(Z ≤ z) =

∫ z

−∞

f(y) dy
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Φ(z)

Φ(t) = P(Z ≤ t) =

∫ z

−∞

f(y) dy
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Φ(z)
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Shifting and scaling normal random variables

Problem
Let X be a normal random variable with mean µ and standard
deviation σ.
Then

Z =
X − µ
σ

follows the standard normal distribution.
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Shifting and scaling normal random variables
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Example 1

Example
Let X be a normal random variable with mean 39.8 and standard
deviation 2.05. Compute

P[X ≤ 40]

P[X ≥ 40]

P[39.8 ≤ X ≤ 40]
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Φ(z)
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Example 2

Problem
Let X, the grade of a randomly selected student in a test of a
probability course, be a normal random variable. A professor is
said to grade such a test on the curve if he finds the average µ and
the standard deviation σ of the grades and then assigns letter
grades according to the following table

Given that Φ(−2) ≈ 0.0228, Φ(1) ≈ 0.8413, compute the
percentage of the students who will get an F.
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Example 3

Example
Suppose that a Scottish soldiers chest size is normally distributed
with mean 39.8 and standard deviation 2.05 inches, respectively.
What is the probability that of 20 randomly selected Scottish
soldiers, five have a chest of at least 40 inches?
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Example 4

Example
The scores on an achievement test given to 100,000 students are
normally distributed with mean 500 and standard deviation 100.
What should the score of a student be to place him among the top
10% of all students?
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Φ(z)
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