Probability Theory and Simulation Methods

Lecture 22: Bivariate distributions

Week 1 · · · · · • Chapter 1: Axioms of probability Chapter 3: Conditional probability and Week 2 · · · · • independence Week 4 · · · · · • Chapters 4, 6: Random variables Week 9 · · · · • Chapter 5, 7: Special distributions Chapters 8, 9, 10: Bivariate and Week 10 multivariate distributions Week 12 · · · · · • Chapter 11: Limit theorems

What you need today

- Basic computations with discrete random variables
- Independence and conditional probability
- Special discrete distributions

Joint probability mass functions

Definition Let X and Y be two discrete random variables defined on the same sample space. Let the sets of possible values of X and Y be A and B, respectively. The function

$$p(x, y) = P(X = x, Y = y)$$

is called the joint probability mass function of X and Y.

Note that $p(x, y) \ge 0$. If $x \notin A$ or $y \notin B$, then p(x, y) = 0. Also,

$$\sum_{x \in A} \sum_{y \in B} p(x, y) = 1.$$
 (8.1)

Joint probability mass functions

Let X and Y have joint probability mass function p(x, y). Let p_X be the probability mass function of X. Then

$$p_X(x) = P(X = x) = P(X = x, Y \in B)$$

= $\sum_{y \in B} P(X = x, Y = y) = \sum_{y \in B} p(x, y).$

Similarly, p_Y , the probability mass function of Y, is given by

$$p_Y(y) = \sum_{x \in A} p(x, y).$$

Marginal probability mass functions

Definition Let X and Y have joint probability mass function p(x, y). Let A be the set of possible values of X and B be the set of possible values of Y. Then the functions $p_X(x) = \sum_{y \in B} p(x, y)$ and $p_Y(y) = \sum_{x \in A} p(x, y)$ are called, respectively, the marginal probability mass functions of X and Y.

Example

Example

- Roll a balanced die and let the outcome be X
- Then toss a fair coin X times and let Y denote the number of tails
- Denote the joint probability mass function of X and Y by p(x, y).

Compute:

- p(1,0)
- p(1,2)

Solution

By definition

$$p(1,0) = P(X = 1, Y = 0)$$

$$= P(X = 1) \cdot P(Y = 0 \mid X = 1)$$

$$= \frac{1}{6} \cdot \frac{1}{2}$$

$$= \frac{1}{12}$$

Similarly

$$p(1,2) = 0$$

Joint probability mass function, presented as a table

		у									
x	0	1	2	3	4	5	6				
1	1/12	1/12	0	0	0	0	0				
2	1/24	2/24	1/24	0	0	0	0				
3	1/48	3/48	3/48	1/48	0	0	0				
4	1/96	4/96	6/96	4/96	1/96	0	0				
5	1/192	5/192	10/192	10/192	5/192	1/192	0				
6	1/384	6/384	15/384	20/384	15/384	6/384	1/384				

Quest 1

- Your team receive a dice from Professor Willow
- Let X be the random variables that denotes the outcome of a random roll of your dice
- Then toss a fair coin X times and let Y denote the number of tails
- Denote the joint probability mass function of X and Y by p(x, y)

Quest: Work with your teammates to present p(x, y) as a table

Joint probability mass function, presented as a table

	у										
x	0	1	2	3	4	5	6	$p_X(x)$			
1	1/12	1/12	0	0	0	0	0	1/6			
2	1/24	2/24	1/24	0	0	0	0	1/6			
3	1/48	3/48	3/48	1/48	0	0	0	1/6			
4	1/96	4/96	6/96	4/96	1/96	0	0	1/6			
5	1/192	5/192	10/192	10/192	5/192	1/192	0	1/6			
6	1/384	6/384	15/384	20/384	15/384	6/384	1/384	1/6			
$p_Y(y)$	63/384	120/384	99/384	64/384	29/384	8/384	1/384				

Quest 2

- Construct the marginal probability mass functions of X and Y
- Compute E(Y)

Independence of discrete random variables

Definition

Let X and Y be two discrete random variables defined on the same sample space. If p(x,y) is the joint probability mass function of X and Y, then X and Y are independent if and only if for all real numbers x and y,

$$p(x, y) = p_X(x) \cdot p_Y(y)$$

Conditional probability of discrete random variables

- Let X be a discrete random variable with set of possible values A, and let Y be a discrete random variable with set of possible values B.
- Let p(x, y) be the joint probability mass function of X and Y, and let p_X and p_Y be the marginal probability mass functions of X and Y
- If no information about the value of Y is given, the probability mass function of X is p_X

Conditional probability of discrete random variables

- If the value of Y is known, then instead of pX(x), the conditional probability mass function of X given that Y = y is used
- This function, denoted by $p_{X|Y}(x|y)$, is defined by

$$p_{X|Y}(x|y) = P(X = x|Y = y) = \frac{p(x,y)}{p_Y(y)}$$

Similarly

$$p_{Y|X}(y|x) = P(Y = y|X = x) = \frac{p(x, y)}{p_X(x)}$$

Quest 3

- Check if X and Y are independent
- Let a be the smaller number on your dice, compute the conditional probability mass function given that Y = a

$$p_{X|Y}(x,a)$$

Compute

$$E[X|Y=a]$$

Example 2

Example

Let the joint probability mass function of X and Y be given by

$$p(x,y) = \begin{cases} \frac{1}{70}x(x+y) & \text{if } x = 1,2,3, \quad y = 3,4\\ 0 & \text{elsewhere} \end{cases}$$

Compute E(X) and E(Y). Are X and Y independent?