Probability Theory and Simulation Methods

April 27th, 2018

Lecture 28: Covariance

Probability Theory and Simulation Methods

イロト イヨト イヨト イヨト

Week 1 · · · · ·	Chapter 1: Axioms of probability	
Week 2	Chapter 3: Conditional probability and independence	
Week 4	Chapters 4, 6: Random variables	
Week 9 · · · · •	Chapter 5, 7: Special distributions	
Week 10 · · · · ·	Chapters 8, 9, 10: Bivariate and multivariate distributions	
Week 12	Chapter 11: Limit theorems	

イロト イヨト イヨト イヨト

크

- 9.1 Multivariate distributions
- 10.2 Covariance and correlation
- 10.1 Expected values of sums of random variables

ヘロト 人間 トイヨト イヨト

Review: Bivariate distributions

Probability Theory and Simulation Methods

・ロト ・ 日下 ・ 日下 ・ 日下

Definition Let X and Y be two discrete random variables defined on the same sample space. Let the sets of possible values of X and Y be A and B, respectively. The function

p(x, y) = P(X = x, Y = y)

is called the joint probability mass function of X and Y.

Note that $p(x, y) \ge 0$. If $x \notin A$ or $y \notin B$, then p(x, y) = 0. Also,

$$\sum_{x \in A} \sum_{y \in B} p(x, y) = 1.$$
(8.1)

イロト イポト イヨト イヨト

Definition Let X and Y have joint probability mass function p(x, y). Let A be the set of possible values of X and B be the set of possible values of Y. Then the functions $p_X(x) = \sum_{y \in B} p(x, y)$ and $p_Y(y) = \sum_{x \in A} p(x, y)$ are called, respectively, the marginal probability mass functions of X and Y.

Definition Two random variables X and Y, defined on the same sample space, have a continuous joint distribution if there exists a nonnegative function of two variables, f(x, y) on $\mathbf{R} \times \mathbf{R}$, such that for any region R in the xy-plane that can be formed from rectangles by a countable number of set operations,

$$P((X,Y) \in R) = \iint_{R} f(x,y) \, dx \, dy. \tag{8.2}$$

The function f(x, y) is called the **joint probability density function** of X and Y.

イロト イポト イヨト イヨト

Marginal probability density functions

$$f_Y(y) = \int_{-\infty}^{\infty} f(x, y) \, dx. \tag{8.5}$$

Similarly,

$$f_X(x) = \int_{-\infty}^{\infty} f(x, y) \, dy. \tag{8.6}$$

Therefore, it is reasonable to make the following definition:

Definition Let X and Y have joint probability density function f(x, y); then the functions f_X and f_Y , given by (8.6) and (8.5), are called, respectively, the marginal probability density functions of X and Y.

イロト イポト イヨト イヨト

When we read an probabilistic expression, e.g

```
E[X + 2Y], E[X], Var[Y], E[X|Y]
```

we need to answer the following questions:

- What is the probability distribution we are working with: is that the joint distribution, is that the marginal distribution, is that the conditional distribution?
- Are the random variables continuous or discrete? Should I use summation or integration?

・ロト ・ 母 ト ・ ヨ ト ・ ヨ ト

Let X and Y be two continuous random variables with joint probability density function f(x, y). Prove that

$$E(X+Y)=E(X)+E(Y)$$

・ロト ・ 四ト ・ ヨト ・ ヨト ・

크

Let X and Y be two discrete random variables. Then

E[E(X|Y)]=E(X)

Probability Theory and Simulation Methods

イロト イヨト イヨト イヨト

Let X and Y be two discrete random variables. Then

$$Var(X) = E[Var(X|Y)] + Var(E[X|Y])$$

Probability Theory and Simulation Methods

イロト イヨト イヨト イヨト

Expected values of sums of random variables

Theorem

Let X_1, X_2, \ldots, X_n be random variables on the same sample space. Then

$$E[X_1 + X_2 + \ldots + X_n] = E[X_1] + E[X_2] + \ldots E[X_n]$$

イロト イヨト イヨト イヨト

크

Definition

Let X and Y be two random variables; then the covariance of X and Y is defined by

$$Cov(X, Y) = E[(X - E(X))(Y - E(Y))]$$

Probability Theory and Simulation Methods

・ロト ・ 四ト ・ ヨト ・ ヨト ・

$$Cov(X, Y) = E[XY] - E[X] \cdot E[Y]$$

Hint: For convenience, define the constants

$$\mu_1=E(X), \mu_2=E(Y),$$

factor the expression of Cov(X, Y), and use the linearity of expectation.

ヘロト 人間 ト 人間 ト 人間 トー

Example

Let X and Y be two random variables with the following joint distribution

p(x,y)		x 0	1
у	0	0.1	0.5
	1	0.2	0.2

Compute the covariance between X and Y

Probability Theory and Simulation Methods

・ロト ・四ト ・ヨト・ヨト・

Example

Let X be uniformly distributed over (-1, 1) and $Y = X^2$. Compute Cov(X, Y)

Recall that the uniform distribution on (a, b) has density

$$f(x) = \begin{cases} \frac{1}{b-a} & \text{if } x \in (a,b) \\ 0 & \text{elsewhere} \end{cases}$$

ヘロト 人間 ト 人間 ト 人間 トー

Problem

Prove that

$$Var(X + Y) = Var(X) + Var(Y) + 2Cov(X, Y)$$

Probability Theory and Simulation Methods

・ ロ ト ・ 四 ト ・ 回 ト ・ 回 ト