MATH450, Fall 2019, Homework 3.
Due Thursday, October 3rd, 9:30am

1. Section 7.1: 13,15
2. Section 7.2: 23, 26
3. Suppose that for a parameter $0 \leq \theta \leq 1, \mathrm{X}$ is the outcome of the roll of a four-sided tetrahedral die

| x | 0 | 1 | 2 | 3 |
| :---: | :---: | :---: | :---: | :---: |
| $\mathrm{p}(\mathrm{x})$ | $\frac{2 \theta}{3}$ | $\frac{\theta}{3}$ | $\frac{2(1-\theta)}{3}$ | $\frac{(1-\theta)}{3}$ |

Suppose the die is rolled 10 times with outcomes

$$
3,0,2,1,3,2,1,0,2,1
$$

(a) Use the method of moments to obtain an estimator of $\theta$.
(b) Use the method of maximum likelihood to obtain an estimator of $\theta$.
4. Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample of size $n$ from a Bernoulli distribution with probability of success $p$

$$
\begin{array}{c|cc}
\mathrm{x} & 0 & 1 \\
\hline \mathrm{p}(\mathrm{x}) & 1-\mathrm{p} & \mathrm{p}
\end{array}
$$

Assume that we estimate $p$ by using

$$
\hat{X}=\frac{X_{1}+X_{2}+\ldots X_{n}+\sqrt{n / 4}}{n+\sqrt{n}}
$$

Compute the bias, the variance and the MSE of this estimator.

