MATH 450: Mathematical statistics

Vu Dinh

Departments of Mathematical Sciences University of Delaware

August 27th, 2019

Vu Dinh MATH 450: Mathematical statistics

- Classes: Tuesday-Thursday: 9:30am-10:45am. Recitation Hall, Room 101
- Office hours: Ewing Hall 312
 - Tuesday 1:30pm-3pm
 - Wednesday 10:30am -12pm
 - By appointments
- Website:

http://vucdinh.github.io/m450f19

 Modern mathematical statistics with applications (Second Edition).
 Devore and Berk.

 Electronic copies of the book are available (free) at UD Library.

Evaluation

- Overall scores will be computed as follows: 25% homework, 10% quizzes, 25% midterm, 40% final
- No letter grades will be given for homework, midterm, or final. Your letter grade for the course will be based on your overall score.
- The lowest homework scores and the lowest quiz score will be dropped.
- Letter grades you can achieve according to your overall score.
 - \geq 90%: At least A
 - $\geq 75\%$: At least B
 - $\geq 60\%$: At least C
 - \geq 50%: At least D

Don't just read it; fight it!

--- Paul R. Halmos

・ロト ・回ト ・ヨト ・ヨト

æ

- Assignments will be posted on the website every other Tuesday (starting from the first week) and will be due on Thursday of *the following week*, *at the beginning of* lecture.
- No late homework will be accepted.
- The lowest homework scores will be dropped in the calculation of your overall homework grade.

- At the end of some chapter, there will be a short quiz during class.
- The quiz dates will be announced at least one class in advance.
- The lowest quiz score will be dropped.

There will be a (tentative) midterm on 10/24 and a final exam during exams week.

Open source statistical system R

http://cran.r-project.org/

(Tentative) Class schedule:

Week	Chapter	Note
1 (Aug 27-29)	1	
2 (Sep 3-5)	6.1 and 6.2	HW1 (due 09/05)
3 (Sep 10-12)	6.2 and 6.3	
4 (Sep 17-19)	7.1	HW2 (due 09/19)
5 (Sep 24-26)	7.2	
6 (Oct 1-3)	7.3 and 7.4	HW3 (due 10/03)
7 (Oct 8-10)	8.1 and 8.2	
8 (Oct 15-17)	8.3 and 9.1	HW4 (due 10/17)
9 (Oct 22-24)	Review + Midterm exam	Midterm exam (10/24)
10 (Oct 29-31)	9.2 and 9.3	
11 (Nov 5-7)	10.1 and 10.2	HW5 (due 11/07)
12 (Nov 12-14)	10.2 and 10.3	
13 (Nov 19-21)	12	HW6 (due 11/21)
14		Thanksgiving week (no class)
15 (Dec 3-5)	Review	
16		Final week

æ

< E > < E >

Week 2 · · · · ·	<i>Chapter 6: Statistics and Sampling</i> <i>Distributions</i>
Week 4 · · · · ·	Chapter 7: Point Estimation
Week 6 · · · · ·	Chapter 8: Confidence Intervals
Week 9 · · · · •	Chapter 9: Test of Hypothesis
Week 11 · · · · ·	Chapter 10: Two-sample inference
Week 12 · · · · ·	Regression

Vu Dinh MATH 450: Mathematical statistics

ヘロト ヘ団ト ヘヨト ヘヨト

æ

Mathematical statistics

Vu Dinh MATH 450: Mathematical statistics

æ

・部・・モト・モン

- Statistics is a branch of mathematics that deals with the collection, organization, analysis, interpretation and presentation of data
- "...analysis, interpretation and presentation of data" \rightarrow mathematical statistics
 - descriptive statistics: the part of statistics that describes data
 - inferential statistics: the part of statistics that draws conclusions from data

Modelling uncertainties

— Modern statistics is about making prediction in the presence of uncertainties

- It is difficult to make predictions, especially about the future.

Vu Dinh MATH 450: Mathematical statistics

ヘロト ヘ河ト ヘヨト ヘヨト

- population: a well-defined collection of objects of interest
- when desired information is available for all objects in the population, we have what is called a *census* → very expensive
- a sample, a subset of the population, is selected

Definition

The random variables $X_1, X_2, ..., X_n$ are said to form a (simple) random sample of size n if

- the X_i 's are independent random variables
- **2** every X_i has the same probability distribution

Week 1: Probability review

Vu Dinh MATH 450: Mathematical statistics

æ

- Axioms of probability
- Conditional probability and independence
- Random variables
- Special distributions
- Bivariate and multivariate distributions

- Expectation and variance of random variables (discrete and continuous)
- Computations with normal distributions
- Bivariate and multivariate distributions

Random variables

- random variables are used to model uncertainties
- Notations:
 - random variables are denoted by uppercase letters (e.g., X);
 - the calculated/observed values of the random variables are denoted by lowercase letters (e.g., x)

Random variable

Definition

Let S be the sample space of an experiment. A real-valued function $X : S \to \mathbb{R}$ is called a random variable of the experiment.

Definition

A random variables X is discrete if the set of all possible values of X

- is finite
- is countably infinite

Note: A set A is countably infinite if its elements can be put in one-to-one correspondence with the set of natural numbers, i.e, we can index the element of A as a sequence

$$A = \{x_1, x_2, \ldots, x_n, \ldots\}$$

A random variable X is described by its *probability mass function*

Definition The probability mass function p of a random variable X whose set of possible values is $\{x_1, x_2, x_3, ...\}$ is a function from \mathbf{R} to \mathbf{R} that satisfies the following properties.

(a)
$$p(x) = 0$$
 if $x \notin \{x_1, x_2, x_3, ...\}$.

(b)
$$p(x_i) = P(X = x_i)$$
 and hence $p(x_i) \ge 0$ $(i = 1, 2, 3, ...)$.

(c)
$$\sum_{i=1}^{\infty} p(x_i) = 1.$$

Represent the probability mass function

• As a table

x	1	2	3	4	5	6	7
p(x)	.01	.03	.13	.25	.39	.17	.02

• As a function:

$$p(x) = \begin{cases} \frac{1}{2} \left(\frac{2}{3}\right)^x & \text{if } x = 1, 2, 3, \dots, \\ 0 & \text{elsewhere} \end{cases}$$

Definition The *expected value* of a discrete random variable X with the set of possible values A and probability mass function p(x) is defined by

$$E(X) = \sum_{x \in A} x p(x).$$

We say that E(X) exists if this sum converges absolutely.

The expected value of a random variable X is also called the **mean**, or the **mathematical expectation**, or simply the **expectation** of X. It is also occasionally denoted by E[X], E(X), EX, μ_X , or μ .

Problem

A random variable X has the following pmf table

What is the expected value of X?

Theorem 4.2 Let X be a discrete random variable with set of possible values A and probability mass function p(x), and let g be a real-valued function. Then g(X) is a random variable with

$$E[g(X)] = \sum_{x \in A} g(x)p(x).$$

Problem

A random variable X has the following pmf table

X	0	1	2
probability	0.25	0.5	0.25

• What is
$$E[X^2 - X]$$
?

• Compute Var[X]

$$Var[X] = E[(X - E[X])^2] = E[X^2] - (E[X])^2$$

Continuous random variables

Vu Dinh MATH 450: Mathematical statistics

▲□ ▶ ▲ 臣 ▶ ▲ 臣 ▶ …

æ

- Continuous random variables
- Distribution functions
- \bullet Working with the standard normal distribution $\mathcal{N}(0,1)$
- Working with the normal distributions $\mathcal{N}(\mu,\sigma^2)$
- Linear combination of normal random variables

Reading: Sections 4.1, 4.2, 4.3

Definition

Let X be a random variable. Suppose that there exists a nonnegative real-valued function $f : \mathbb{R} \to [0, \infty)$ such that for any subset of real numbers A, we have

$$P(X \in A) = \int_A f(x) dx$$

Then X is called **absolutely continuous** or, for simplicity, **continuous**. The function f is called the **probability density function**, or simply the **density function** of X.

Whenever we say that X is continuous, we mean that it is absolutely continuous and hence satisfies the equation above.

Properties

Let X be a continuous r.v. with density function f, then

•
$$f(x) \ge 0$$
 for all $x \in \mathbb{R}$

• $\int_{-\infty}^{\infty} f(x) dx = 1$

• For any fixed constant a, b,

$$P(a \le X \le b) = \int_a^b f(x) \ dx$$

Figure 4.2 $P(a \le X \le b)$ = the area under the density curve between *a* and *b*

伺 ト イヨト イヨト

Definition If X is a continuous random variable with probability density function f, the **expected value** of X is defined by

$$E(X) = \int_{-\infty}^{\infty} x f(x) \, dx.$$

The expected value of X is also called the **mean**, or **mathematical expectation**, or simply the **expectation** of X, and as in the discrete case, sometimes it is denoted by EX, E[X], μ , or μ_X .

・ 同 ト ・ ヨ ト ・ ヨ ト

Theorem 6.3 Let X be a continuous random variable with probability density function f(x); then for any function $h : \mathbf{R} \to \mathbf{R}$,

$$E[h(X)] = \int_{-\infty}^{\infty} h(x) f(x) \, dx.$$

æ

《曰》《聞》《臣》《臣》。

Problem

Let X be a continuous r.v. with density function

$$f(x) = egin{cases} 2x & \textit{if } x \in [0,1] \ 0 & \textit{otherwise} \end{cases}$$

where c is some unknown constant.

- Compute $P(X \in [0.25, 0.75])$
- Compute E[X] and Var(X).

Definition

If X is a random variable, then the function F defined on $(-\infty,\infty)$ by

$$F(t)=P(X\leq t)$$

is called the distribution function of X.

Figure 4.2 $P(a \le X \le b)$ = the area under the density curve between *a* and *b*

→ Ξ →

Distribution function

For continuous random variable:

$$F(t) = P(X \le t) = \int_{(-\infty,t]} f(x) dx$$
$$= \int_{-\infty}^{t} f(x) dx$$

Figure 4.5 A pdf and associated cdf

э

Distribution function

For continuous random variable:

$$P(a \le X \le b) = \int_a^b f(x) \ dx = F(b) - F(a)$$

Figure 4.2 $P(a \le X \le b)$ = the area under the density curve between *a* and *b*

Moreover:

$$f(x)=F'(x)$$

The distribution function for the duration of a certain soap opera (in tens of hours) is

$$F(y) = \begin{cases} 1 - \frac{16}{y^2} & \text{if } y \ge 4\\ 0 & \text{elsewhere} \end{cases}$$

Find $P[4 \leq Y \leq 8]$.

Normal random variables

Reading: 4.3

Vu Dinh MATH 450: Mathematical statistics

돈 돈 돈

 $\mathcal{N}(\mu, \sigma^2)$

 $E(X) = \mu, Var(X) = \sigma^2$

▲御▶ ▲ 陸▶ ▲ 陸▶ - 陸

 $\mathcal{N}(\mu, \sigma^2)$

•
$$E(X) = \mu$$
, $Var(X) = \sigma^2$

• Density function

$$f(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

æ

• If Z is a normal random variable with parameters $\mu = 0$ and $\sigma = 1$, then the pdf of Z is

$$f(z)=\frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$$

and Z is called the standard normal distribution • E(Z) = 0, Var(Z) = 1

< E > < E >

 $\Phi(z)$

$$\Phi(z) = P(Z \le z) = \int_{-\infty}^{z} f(y) \, dy$$

æ

'≣ ▶

→ < ∃ →

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9278	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767

Table A.3 Standard Normal Curve Areas (cont.)

 $\Phi(z) = P(Z \le z)$

▲□▶ ▲□▶ ▲臣▶ ▲臣▶ 三臣 - のへで

Let Z be a standard normal random variable. Compute

- *P*[*Z* ≤ 0.75]
- *P*[*Z* ≥ 0.82]
- $P[1 \le Z \le 1.96]$
- *P*[*Z* ≤ −0.82]

Note: The density function of Z is symmetric around 0.

Let Z be a standard normal random variable. Find a, b such that

$$P[Z \le a] = 0.95$$

and

$$P[-b \le Z \le b] = 0.95$$

B> B

 $\mathcal{N}(\mu, \sigma^2)$

•
$$E(X) = \mu$$
, $Var(X) = \sigma^2$

• Density function

$$f(x,\mu,\sigma) = \frac{1}{\sqrt{2\pi\sigma^2}} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

æ

Let X be a normal random variable with mean μ and standard deviation σ .

Then

$$Z = \frac{X - \mu}{\sigma}$$

follows the standard normal distribution.

Shifting and scaling normal random variables

If X has a normal distribution with mean μ and standard deviation σ , then

$$Z = \frac{X - \mu}{\sigma}$$

has a standard normal distribution. Thus

$$P(a \le X \le b) = P\left(\frac{a-\mu}{\sigma} \le Z \le \frac{b-\mu}{\sigma}\right)$$
$$= \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$$
$$P(X \le a) = \Phi\left(\frac{a-\mu}{\sigma}\right) \quad P(X \ge b) = 1 - \Phi\left(\frac{b-\mu}{\sigma}\right)$$

伺 ト イヨ ト イヨト

Let X be a $\mathcal{N}(3,9)$ random variable. Compute $P[X \leq 5.25]$.

Vu Dinh MATH 450: Mathematical statistics

・四ト・モート・モート

æ