MATH 450: Mathematical statistics

Vu Dinh

Departments of Mathematical Sciences
University of Delaware
August 27th, 2019

General information

- Classes: Tuesday-Thursday: 9:30am-10:45am. Recitation Hall, Room 101
- Office hours: Ewing Hall 312
- Tuesday 1:30pm-3pm
- Wednesday 10:30am -12pm
- By appointments
- Website:
http://vucdinh.github.io/m450f19

Springer fats in Statite

Jay L. Devore
Kenneth N. Berk
Modern
Mathematical Statistics with Applications

ERTM
 2

Springer

- Modern mathematical statistics with applications (Second Edition).
Devore and Berk.
- Electronic copies of the book are available (free) at UD Library.
- Overall scores will be computed as follows: 25% homework, 10% quizzes, 25% midterm, 40% final
- No letter grades will be given for homework, midterm, or final. Your letter grade for the course will be based on your overall score.
- The lowest homework scores and the lowest quiz score will be dropped.
- Letter grades you can achieve according to your overall score.
- $\geq 90 \%$: At least A
- $\geq 75 \%$: At least B
- $\geq 60 \%$: At least C
- $\geq 50 \%$: At least D

HOW TO STUDY MATH

Don't just read it; fight it!
.- Paul R. Halmos

Homework

- Assignments will be posted on the website every other Tuesday (starting from the first week) and will be due on Thursday of the following week, at the beginning of lecture.
- No late homework will be accepted.
- The lowest homework scores will be dropped in the calculation of your overall homework grade.

Quizzes and exams

- At the end of some chapter, there will be a short quiz during class.
- The quiz dates will be announced at least one class in advance.
- The lowest quiz score will be dropped.

There will be a (tentative) midterm on 10/24 and a final exam during exams week.

Data analysis

Open source statistical system R http://cran.r-project.org/
(Tentative) Class schedule:

Week	Chapter	Note
1 (Aug 27-29)	1	
2 (Sep 3-5)	6.1 and 6.2	HW1 (due 09/05)
3 (Sep 10-12)	6.2 and 6.3	HW2 (due 09/19)
4 (Sep 17-19)	7.1	
5 (Sep 24-26)	7.2	HW3 (due 10/03)
6 (Oct 1-3)	7.3 and 7.4	
7 (Oct 8-10)	8.1 and 8.2	HW4 (due 10/17)
8 (Oct 15-17)	8.3 and 9.1	Midterm exam (10/24)
9 (Oct 22-24)	Review + Midterm exam	
10 (Oct 29-31)	9.2 and 9.3	
11 (Nov 5-7)	10.1 and 10.2	HW5 (due 11/07)
12 (Nov 12-14)	10.2 and 10.3	
13 (Nov 19-21)	12	HW6 (due 11/21)
14	Review	
15 (Dec 3-5)		
16		Thanksgiving week (no class)

Week $2 \ldots \ldots$.	Chapter 6: Statistics and Sampling Distributions
Week $4 \ldots \ldots$.	Chapter 7: Point Estimation
Week $6 \ldots \ldots$.	Chapter 8: Confidence Intervals
Week $9 \ldots \ldots$.	Chapter 9: Test of Hypothesis
Week $11 \ldots \ldots$.	Chapter 10: Two-sample inference
Week $12 \ldots \ldots$.	Regression

Mathematical statistics

Mathematical statistics

- Statistics is a branch of mathematics that deals with the collection, organization, analysis, interpretation and presentation of data
- "...analysis, interpretation and presentation of data"
\rightarrow mathematical statistics
- descriptive statistics: the part of statistics that describes data
- inferential statistics: the part of statistics that draws conclusions from data

Modelling uncertainties

- Modern statistics is about making prediction in the presence of uncertainties

- It is difficult to make predictions, especially about the future. America: Debt Free By 2013

Inferential statistics

- population: a well-defined collection of objects of interest
- when desired information is available for all objects in the population, we have what is called a census
\rightarrow very expensive
- a sample, a subset of the population, is selected

Random sample

Definition

The random variables $X_{1}, X_{2}, \ldots, X_{n}$ are said to form a (simple) random sample of size n if
(1) the X_{i} 's are independent random variables
(2) every X_{i} has the same probability distribution

Week 1: Probability review

Overview

- Axioms of probability
- Conditional probability and independence
- Random variables
- Special distributions
- Bivariate and multivariate distributions

Most important parts

- Expectation and variance of random variables (discrete and continuous)
- Computations with normal distributions
- Bivariate and multivariate distributions

Random variables

- random variables are used to model uncertainties
- Notations:
- random variables are denoted by uppercase letters (e.g., X);
- the calculated/observed values of the random variables are denoted by lowercase letters (e.g., x)

Random variable

Definition

Let S be the sample space of an experiment. A real-valued function $X: S \rightarrow \mathbb{R}$ is called a random variable of the experiment.

Discrete random variable

Definition

A random variables X is discrete if the set of all possible values of X

- is finite
- is countably infinite

Note: A set A is countably infinite if its elements can be put in one-to-one correspondence with the set of natural numbers, i.e, we can index the element of A as a sequence

$$
A=\left\{x_{1}, x_{2}, \ldots, x_{n}, \ldots\right\}
$$

Discrete random variable

A random variable X is described by its probability mass function

Definition The probability mass function p of a random variable X whose set of possible values is $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ is a function from \mathbf{R} to \mathbf{R} that satisfies the following properties.
(a) $p(x)=0$ if $x \notin\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$.
(b) $p\left(x_{i}\right)=P\left(X=x_{i}\right)$ and hence $p\left(x_{i}\right) \geq 0(i=1,2,3, \ldots)$.
(c) $\quad \sum_{i=1}^{\infty} p\left(x_{i}\right)=1$.

Represent the probability mass function

- As a table

x	1	2	3	4	5	6	7
$p(x)$.01	.03	.13	.25	.39	.17	.02

- As a function:

$$
p(x)= \begin{cases}\frac{1}{2}\left(\frac{2}{3}\right)^{x} & \text { if } x=1,2,3, \ldots \\ 0 & \text { elsewhere }\end{cases}
$$

Expectation

Definition The expected value of a discrete random variable X with the set of possible values A and probability mass function $p(x)$ is defined by

$$
E(X)=\sum_{x \in A} x p(x) .
$$

We say that $E(X)$ exists if this sum converges absolutely.

The expected value of a random variable X is also called the mean, or the mathematical expectation, or simply the expectation of X. It is also occasionally denoted by $E[X], E(X), E X, \mu_{X}$, or μ.

Exercise

Problem

A random variable X has the following pmf table

X	0	1	2
probability	0.25	0.5	0.25

What is the expected value of X ?

Law of the unconscious statistician (LOTUS)

Theorem 4.2 Let X be a discrete random variable with set of possible values A and probability mass function $p(x)$, and let g be a real-valued function. Then $g(X)$ is a random variable with

$$
E[g(X)]=\sum_{x \in A} g(x) p(x) .
$$

Problem

A random variable X has the following pmf table

X	0	1	2
probability	0.25	0.5	0.25

- What is $E\left[X^{2}-X\right]$?
- Compute $\operatorname{Var}[X]$

$$
\operatorname{Var}[X]=E\left[(X-E[X])^{2}\right]=E\left[X^{2}\right]-(E[X])^{2}
$$

Continuous random variables

Overview

- Continuous random variables
- Distribution functions
- Working with the standard normal distribution $\mathcal{N}(0,1)$
- Working with the normal distributions $\mathcal{N}\left(\mu, \sigma^{2}\right)$
- Linear combination of normal random variables

Reading: Sections 4.1, 4.2, 4.3

Continuous random variable

Definition

Let X be a random variable. Suppose that there exists a nonnegative real-valued function $f: \mathbb{R} \rightarrow[0, \infty)$ such that for any subset of real numbers A, we have

$$
P(X \in A)=\int_{A} f(x) d x
$$

Then X is called absolutely continuous or, for simplicity, continuous. The function f is called the probability density function, or simply the density function of X.

Whenever we say that X is continuous, we mean that it is absolutely continuous and hence satisfies the equation above.

Properties

Let X be a continuous r.v. with density function f, then

- $f(x) \geq 0$ for all $x \in \mathbb{R}$
- $\int_{-\infty}^{\infty} f(x) d x=1$
- For any fixed constant a, b,

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x
$$

Figure 4.2 $P(a \leq X \leq b)=$ the area under the density curve between a and b

Expectation

Definition If X is a continuous random variable with probability density function f, the expected value of X is defined by

$$
E(X)=\int_{-\infty}^{\infty} x f(x) d x
$$

The expected value of X is also called the mean, or mathematical expectation, or simply the expectation of X, and as in the discrete case, sometimes it is denoted by $E X, E[X]$, μ, or μ_{X}.

Theorem 6.3 Let X be a continuous random variable with probability density function $f(x)$; then for any function $h: \mathbf{R} \rightarrow \mathbf{R}$,

$$
E[h(X)]=\int_{-\infty}^{\infty} h(x) f(x) d x
$$

Example

Problem

Let X be a continuous r.v. with density function

$$
f(x)= \begin{cases}2 x & \text { if } x \in[0,1] \\ 0 & \text { otherwise }\end{cases}
$$

where c is some unknown constant.

- Compute $P(X \in[0.25,0.75])$
- Compute $E[X]$ and $\operatorname{Var}(X)$.

Distribution function

Definition

If X is a random variable, then the function F defined on $(-\infty, \infty)$ by

$$
F(t)=P(X \leq t)
$$

is called the distribution function of X.

Figure 4.2 $P(a \leq X \leq b)=$ the area under the density curve between a and b

Distribution function

For continuous random variable:

$$
\begin{aligned}
F(t)=P(X \leq t) & =\int_{(-\infty, t]} f(x) d x \\
& =\int_{-\infty}^{t} f(x) d x
\end{aligned}
$$

Figure 4.5 A pdf and associated cdf

Distribution function

For continuous random variable:

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Figure 4.2 $P(a \leq X \leq b)=$ the area under the density curve between a and b

Moreover:

$$
f(x)=F^{\prime}(x)
$$

Example

Problem

The distribution function for the duration of a certain soap opera (in tens of hours) is

$$
F(y)= \begin{cases}1-\frac{16}{y^{2}} & \text { if } y \geq 4 \\ 0 & \text { elsewhere }\end{cases}
$$

Find $P[4 \leq Y \leq 8]$.

Normal random variables

Reading: 4.3

$E(X)=\mu, \operatorname{Var}(X)=\sigma^{2}$

$\mathcal{N}\left(\mu, \sigma^{2}\right)$

- $E(X)=\mu, \operatorname{Var}(X)=\sigma^{2}$
- Density function

$$
f(x, \mu, \sigma)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Standard normal distribution $\mathcal{N}(0,1)$

- If Z is a normal random variable with parameters $\mu=0$ and $\sigma=1$, then the pdf of Z is

$$
f(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}}
$$

and Z is called the standard normal distribution

- $E(Z)=0, \operatorname{Var}(Z)=1$

Shaded area $=\Phi(z)$

Table A. 3 Standard Normal Curve Areas (cont.) $\quad \Phi(z)=P(Z \leq z)$

\boldsymbol{z}	$\mathbf{. 0 0}$	$\mathbf{. 0 1}$	$\mathbf{. 0 2}$	$\mathbf{. 0 3}$	$\mathbf{. 0 4}$	$\mathbf{. 0 5}$	$\mathbf{. 0 6}$	$\mathbf{. 0 7}$	$\mathbf{. 0 8}$	$\mathbf{. 0 9}$
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9278	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767

Exercise 1

Problem

Let Z be a standard normal random variable.
Compute

- $P[Z \leq 0.75]$
- $P[Z \geq 0.82]$
- $P[1 \leq Z \leq 1.96]$
- $P[Z \leq-0.82]$

Note: The density function of Z is symmetric around 0 .

Exercise 2

Problem

Let Z be a standard normal random variable. Find a, b such that

$$
P[Z \leq a]=0.95
$$

and

$$
P[-b \leq Z \leq b]=0.95
$$

$\mathcal{N}\left(\mu, \sigma^{2}\right)$

- $E(X)=\mu, \operatorname{Var}(X)=\sigma^{2}$
- Density function

$$
f(x, \mu, \sigma)=\frac{1}{\sqrt{2 \pi \sigma^{2}}} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

Shifting and scaling normal random variables

Problem

Let X be a normal random variable with mean μ and standard deviation σ.
Then

$$
Z=\frac{X-\mu}{\sigma}
$$

follows the standard normal distribution.

Shifting and scaling normal random variables

If X has a normal distribution with mean μ and standard deviation σ, then

$$
Z=\frac{X-\mu}{\sigma}
$$

has a standard normal distribution. Thus

$$
\begin{gathered}
P(a \leq X \leq b)=P\left(\frac{a-\mu}{\sigma} \leq Z \leq \frac{b-\mu}{\sigma}\right) \\
=\Phi\left(\frac{b-\mu}{\sigma}\right)-\Phi\left(\frac{a-\mu}{\sigma}\right) \\
P(X \leq a)=\Phi\left(\frac{a-\mu}{\sigma}\right) \quad P(X \geq b)=1-\Phi\left(\frac{b-\mu}{\sigma}\right)
\end{gathered}
$$

Exercise 3

Problem

Let X be a $\mathcal{N}(3,9)$ random variable. Compute $P[X \leq 5.25]$.

