MATH 450: Mathematical statistics

September 3rd, 2019
Lecture 3: Statistics and Sampling Distributions

Week $2 \ldots \ldots$.	Chapter 6: Statistics and Sampling Distributions
Week $4 \ldots \ldots$.	Chapter 7: Point Estimation
Week $6 \ldots \ldots$.	Chapter 8: Confidence Intervals
Week $9 \ldots \ldots$.	Chapter 9: Test of Hypothesis
Week $11 \ldots \ldots$.	Chapter 10: Two-sample inference
Week $12 \ldots \ldots$.	Regression

Week 1: Probability review

Random variable

Definition

Let S be the sample space of an experiment. A real-valued function $X: S \rightarrow \mathbb{R}$ is called a random variable of the experiment.

Discrete random variable

A random variable X is described by its probability mass function

Definition The probability mass function p of a random variable X whose set of possible values is $\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$ is a function from \mathbf{R} to \mathbf{R} that satisfies the following properties.
(a) $p(x)=0$ if $x \notin\left\{x_{1}, x_{2}, x_{3}, \ldots\right\}$.
(b) $p\left(x_{i}\right)=P\left(X=x_{i}\right)$ and hence $p\left(x_{i}\right) \geq 0(i=1,2,3, \ldots)$.
(c) $\quad \sum_{i=1}^{\infty} p\left(x_{i}\right)=1$.

Law of the unconscious statistician (LOTUS)

Theorem 4.2 Let X be a discrete random variable with set of possible values A and probability mass function $p(x)$, and let g be a real-valued function. Then $g(X)$ is a random variable with

$$
E[g(X)]=\sum_{x \in A} g(x) p(x) .
$$

Continuous random variable

Definition

Let X be a random variable. Suppose that there exists a nonnegative real-valued function $f: \mathbb{R} \rightarrow[0, \infty)$ such that for any subset of real numbers A, we have

$$
P(X \in A)=\int_{A} f(x) d x
$$

Then X is called absolutely continuous or, for simplicity, continuous. The function f is called the probability density function, or simply the density function of X.

Whenever we say that X is continuous, we mean that it is absolutely continuous and hence satisfies the equation above.

Properties

Let X be a continuous r.v. with density function f, then

- $f(x) \geq 0$ for all $x \in \mathbb{R}$
- $\int_{-\infty}^{\infty} f(x) d x=1$
- For any fixed constant a, b,

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x
$$

Figure 4.2 $P(a \leq X \leq b)=$ the area under the density curve between a and b

Expectation

Definition If X is a continuous random variable with probability density function f, the expected value of X is defined by

$$
E(X)=\int_{-\infty}^{\infty} x f(x) d x
$$

The expected value of X is also called the mean, or mathematical expectation, or simply the expectation of X, and as in the discrete case, sometimes it is denoted by $E X, E[X]$, μ, or μ_{X}.

Theorem 6.3 Let X be a continuous random variable with probability density function $f(x)$; then for any function $h: \mathbf{R} \rightarrow \mathbf{R}$,

$$
E[h(X)]=\int_{-\infty}^{\infty} h(x) f(x) d x
$$

Distribution function

Definition

If X is a random variable, then the function F defined on $(-\infty, \infty)$ by

$$
F(t)=P(X \leq t)
$$

is called the distribution function of X.

Figure 4.2 $P(a \leq X \leq b)=$ the area under the density curve between a and b

Distribution function

For continuous random variable:

$$
P(a \leq X \leq b)=\int_{a}^{b} f(x) d x=F(b)-F(a)
$$

Figure 4.2 $P(a \leq X \leq b)=$ the area under the density curve between a and b

Moreover:

$$
f(x)=F^{\prime}(x)
$$

$E(X)=\mu, \operatorname{Var}(X)=\sigma^{2}$

Standard normal distribution $\mathcal{N}(0,1)$

- If Z is a normal random variable with parameters $\mu=0$ and $\sigma=1$, then the pdf of Z is

$$
f(z)=\frac{1}{\sqrt{2 \pi}} e^{-\frac{z^{2}}{2}}
$$

and Z is called the standard normal distribution

- $E(Z)=0, \operatorname{Var}(Z)=1$

Shaded area $=\Phi(z)$

Table A. 3 Standard Normal Curve Areas (cont.) $\quad \Phi(z)=P(Z \leq z)$

\boldsymbol{z}	$\mathbf{. 0 0}$	$\mathbf{. 0 1}$	$\mathbf{. 0 2}$	$\mathbf{. 0 3}$	$\mathbf{. 0 4}$	$\mathbf{. 0 5}$	$\mathbf{. 0 6}$	$\mathbf{. 0 7}$	$\mathbf{. 0 8}$	$\mathbf{. 0 9}$
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9278	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767

Shifting and scaling normal random variables

If X has a normal distribution with mean μ and standard deviation σ, then

$$
Z=\frac{X-\mu}{\sigma}
$$

has a standard normal distribution. Thus

$$
\begin{gathered}
P(a \leq X \leq b)=P\left(\frac{a-\mu}{\sigma} \leq Z \leq \frac{b-\mu}{\sigma}\right) \\
=\Phi\left(\frac{b-\mu}{\sigma}\right)-\Phi\left(\frac{a-\mu}{\sigma}\right) \\
P(X \leq a)=\Phi\left(\frac{a-\mu}{\sigma}\right) \quad P(X \geq b)=1-\Phi\left(\frac{b-\mu}{\sigma}\right)
\end{gathered}
$$

Exercise 3

Problem

Let X be a $\mathcal{N}(3,9)$ random variable. Compute $P[X \leq 5.25]$.

Descriptive statistics

1.3: Measures of locations

- The Mean
- The Median
- Trimmed Means

Measures of locations: mean

The sample mean \bar{x} of observations $x_{1}, x_{2}, \ldots, x_{n}$ is given by

$$
\bar{x}=\frac{x_{1}+x_{2}+\cdots+x_{n}}{n}=\frac{\sum_{i=1}^{n} x_{i}}{n}
$$

Measures of locations: median

Step 1: ordering the observations from smallest to largest

$$
\tilde{x}=\left\{\begin{array}{l}
\begin{array}{l}
\text { The single } \\
\text { middle } \\
\text { value if } n \\
\text { is odd }
\end{array} \quad=\left(\frac{n+1}{2}\right)^{\text {th }} \text { ordered value } \\
\begin{array}{l}
\text { The average } \\
\text { of the two } \\
\text { middle } \\
\text { values if } n \\
\text { is even }
\end{array} \quad=\text { average of }\left(\frac{n}{2}\right)^{\text {th }} \text { and }\left(\frac{n}{2}+1\right)^{\text {th }} \text { ordered values }
\end{array}\right.
$$

Median is not affected by outliers

Measures of locations: trimmed mean

- A $\alpha \%$ trimmed mean is computed by:
- eliminating the smallest $\alpha \%$ and the largest $\alpha \%$ of the sample
- averaging what remains
- $\alpha=0 \rightarrow$ the mean
- $\alpha \approx 50 \rightarrow$ the median

Measures of variability: deviations from the mean

The sample variance, denoted by s^{2}, is given by

$$
s^{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}=\frac{S_{x x}}{n-1}
$$

The sample standard deviation, denoted by s, is the (positive) square root of the variance:

$$
s=\sqrt{s^{2}}
$$

Working with vectors in R

- manually create a vector a with entry values

$$
a=c(1,2,6,8,5,3,-1,2.1,0)
$$

- create a zero vector with length $n=25$

$$
a=\operatorname{rep}(0,25)
$$

- $a[i]$ is the $i^{t h}$ element of a
- manipulate all entries at the same time using 'for' loop

Working with vectors in R

- rnorm(n, mean=0, sd=2)
generate a vector of n observations withdraw from the normal distribution with mean $\mu=0$ and standard deviation $\sigma=2$
- hist(A)
produce a histogram plot of the vector A
- boxplot(A)
produce a boxplot of A
https://www.rdocumentation.org/packages/graphics/ versions/3.6.1/topics/boxplot

Boxplots

Order the n observations from smallest to largest and separate the smallest half from the largest half; the median \tilde{x} is included in both halves if n is odd. Then the lower fourth is the median of the smallest half and the upper fourth is the median of the largest half. A measure of spread that is resistant to outliers is the fourth spread f_{s}, given by

$$
f_{s}=\text { upper fourth }- \text { lower fourth }
$$

Boxplots

```
40}52525560707585859090 92 94 94 95 98 100 115 125 125
```

The five-number summary is as follows:

$$
\begin{aligned}
& \text { smallest } x_{i}=40 \\
& \text { largest } x_{i}=125
\end{aligned}
$$

Figure 1.17 A boxplot of the corrosion data

Boxplot with outliers

Any observation farther than $1.5 f_{s}$ from the closest fourth is an outlier. An outlier is extreme if it is more than $3 f_{s}$ from the nearest fourth, and it is mild otherwise.

Statistics and sampling distribution

Overview

6.1 Statistics and their distributions
6.2 The distribution of the sample mean
6.3 The distribution of a linear combination

Order $6.1 \rightarrow 6.3 \rightarrow 6.2$

Random sample

Definition

The random variables $X_{1}, X_{2}, \ldots, X_{n}$ are said to form a (simple) random sample of size n if
(1) the X_{i} 's are independent random variables
(2) every X_{i} has the same probability distribution

Recap: Independent random variables

Definition

Two random variables X and Y are said to be independent if for every pair of x and y values,
$P(X=x, Y=y)=P_{X}(x) \cdot P_{Y}(y) \quad$ if the variables are discrete
or

$$
f(x, y)=f_{X}(x) \cdot f_{Y}(y) \quad \text { if the variables are continuous }
$$

Property
If X and Y are independent, then for any functions g and h

$$
E[g(X) \cdot h(Y)]=E[g(X)] \cdot E[h(Y)]
$$

Statistics

Definition

A statistic is any quantity whose value can be calculated from sample data

- prior to obtaining data, there is uncertainty as to what value of any particular statistic will result \rightarrow a statistic is a random variable
- the probability distribution of a statistic is referred to as its sampling distribution

Random variables

- random variables are used to model uncertainties
- Notations:
- random variables are denoted by uppercase letters (e.g., X);
- the calculated/observed values of the random variables are denoted by lowercase letters (e.g., x)

Example of a statistic

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample of size n
- The sample mean of $X_{1}, X_{2}, \ldots, X_{n}$, defined by

$$
\bar{X}=\frac{X_{1}+X_{2}+\ldots X_{n}}{n}
$$

is a statistic

- When the values of $x_{1}, x_{2}, \ldots, x_{n}$ are collected,

$$
\bar{x}=\frac{x_{1}+x_{2}+\ldots x_{n}}{n}
$$

is a realization of the statistic \bar{X}

Example of a statistic

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample of size n
- The random variable

$$
T=X_{1}+2 X_{2}+3 X_{5}
$$

is a statistic

- When the values of $x_{1}, x_{2}, \ldots, x_{n}$ are collected,

$$
t=x_{1}+2 x_{2}+3 x_{5},
$$

is a realization of the statistic T

Questions for this chapter

Given statistic T computed from sample $X_{1}, X_{2}, \ldots, X_{n}$

- Question 1: If we know the distribution of X_{i} 's, can we obtain the distribution of T ?
- Question 2: If we don't know the distribution of X_{i} 's, can we still obtain/approximate the distribution of T ?

Questions for this chapter

Real questions: If T is a linear combination of X_{i} 's, can we

- compute the distribution of T in some easy cases?
- compute the expected value and variance of T ?

Questions for this section

Real questions: If $T=X_{1}+X_{2}$

- compute the distribution of T in some easy cases
- compute the expected value and variance of T

Example 1

Problem

Consider the distribution P

x	10	15	20
$p(x)$	0.2	0.3	0.5

Let $\left\{X_{1}, X_{2}\right\}$ be a random sample of size 2 from P, and $T=X_{1}+X_{2}$.
(1) Compute $P[T=40]$

Example 1

Problem

Consider the distribution P

x	10	15	20
$p(x)$	0.2	0.3	0.5

Let $\left\{X_{1}, X_{2}\right\}$ be a random sample of size 2 from P, and $T=X_{1}+X_{2}$.
(1) Compute $P[T=40]$
(2) Derive the probability mass function of T

Example 1

Problem

Consider the distribution P

x	10	15	20
$p(x)$	0.2	0.3	0.5

Let $\left\{X_{1}, X_{2}\right\}$ be a random sample of size 2 from P, and $T=X_{1}+X_{2}$.
(1) Compute $P[T=100]$
(2) Derive the probability mass function of T
(3) Compute the expected value and the standard deviation of T

Example 2

Problem

Let $\left\{X_{1}, X_{2}\right\}$ be a random sample of size 2 from the exponential distribution with parameter λ

$$
f(x)= \begin{cases}\lambda e^{-\lambda x} & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

and $T=X_{1}+X_{2}$.
What is the distribution of T ?

For continuous random variable:

$$
F_{X}(t)=P(X \leq t)=\int_{-\infty}^{t} f(x) d x
$$

Figure 4.5 A pdf and associated cdf

Moreover:

$$
f(x)=F^{\prime}(x)
$$

Example 2

Problem

Let $\left\{X_{1}, X_{2}\right\}$ be a random sample of size 2 from the exponential distribution with parameter λ

$$
f(x)= \begin{cases}\lambda e^{-\lambda x} & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

and $T=X_{1}+X_{2}$.
(1) Compute the cumulative density function (cdf) of T

Example 2

$$
\begin{aligned}
F_{T_{o}}(t) & =P\left(X_{1}+X_{2} \leq t\right)=\iint_{\left\{\left(x_{1}, x_{2}\right) x_{1}+x_{2} \leq t\right\}} f\left(x_{1}, x_{2}\right) d x_{1} d x_{2} \\
& =\int_{0}^{t} \int_{0}^{t-x_{1}} \lambda e^{-\lambda x_{1}} \cdot \lambda e^{-\lambda x_{2}} d x_{2} d x_{1}=\int_{0}^{t}\left(\lambda e^{-\lambda x_{1}}-\lambda e^{-\lambda t}\right) d x_{1} \\
& =1-e^{-\lambda t}-\lambda t e^{-\lambda t}
\end{aligned}
$$

Example 2b

Problem

Let $\left\{X_{1}, X_{2}\right\}$ be a random sample of size 2 from the exponential distribution with parameter $\lambda=2$

$$
f(x)= \begin{cases}2 e^{-2 x} & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

and $T=X_{1}+X_{2}$.
(1) Compute the cumulative density function (cdf) of T
(2) Compute the probability density function (pdf) of T
(1) If the distribution and the statistic T is simple, try to construct the pmf of the statistic (as in Example 1)
(2) If the probability density function $f_{X}(x)$ of X 's is known, the

- try to represent/compute the cumulative distribution (cdf) of T

$$
\mathbb{P}[T \leq t]
$$

- take the derivative of the function (with respect to t)

Example 1*

Problem

Consider the distribution P

x	40	45	50
$p(x)$	0.2	0.3	0.5

Let $\left\{X_{1}, X_{2}\right\}$ be a random sample of size 2 from P, and $T=X_{1}-X_{2}$.
(1) Derive the probability mass function of T
(2) Compute the expected value and the standard deviation of T

Example 2*

Problem

Let $\left\{X_{1}, X_{2}\right\}$ be a random sample of size 2 from the exponential distribution with parameter λ

$$
f(x)= \begin{cases}\lambda e^{-\lambda x} & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

and $T=X_{1}+2 X_{2}$.
(1) Compute the cumulative density function (cdf) of T
(2) Compute the probability density function (pdf) of T

