MATH 450: Mathematical statistics

September 3rd, 2019

Lecture 3: Statistics and Sampling Distributions

MATH 450: Mathematical statistics

Week 2 · · · · ·	Chapter 6: Statistics and Sampling Distributions
Week 4 · · · · ·	Chapter 7: Point Estimation
Week 6 · · · · ·	Chapter 8: Confidence Intervals
Week 9 · · · · ·	Chapter 9: Test of Hypothesis
Week 11	Chapter 10: Two-sample inference
Week 12 · · · · ·	Regression

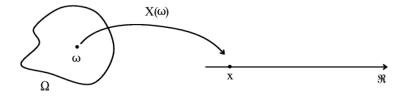
▲日 ▶ ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ →

æ

Week 1: Probability review

æ

Random variable



Definition

Let S be the sample space of an experiment. A real-valued function $X : S \to \mathbb{R}$ is called a random variable of the experiment.

A random variable X is described by its *probability mass function*

Definition The probability mass function p of a random variable X whose set of possible values is $\{x_1, x_2, x_3, ...\}$ is a function from \mathbf{R} to \mathbf{R} that satisfies the following properties.

(a)
$$p(x) = 0$$
 if $x \notin \{x_1, x_2, x_3, ...\}.$

(b)
$$p(x_i) = P(X = x_i)$$
 and hence $p(x_i) \ge 0$ $(i = 1, 2, 3, ...)$.

(c)
$$\sum_{i=1}^{\infty} p(x_i) = 1.$$

Theorem 4.2 Let X be a discrete random variable with set of possible values A and probability mass function p(x), and let g be a real-valued function. Then g(X) is a random variable with

$$E[g(X)] = \sum_{x \in A} g(x) p(x).$$

Let X be a random variable. Suppose that there exists a nonnegative real-valued function $f : \mathbb{R} \to [0, \infty)$ such that for any subset of real numbers A, we have

$$P(X \in A) = \int_A f(x) dx$$

Then X is called **absolutely continuous** or, for simplicity, **continuous**. The function f is called the **probability density function**, or simply the **density function** of X.

Whenever we say that X is continuous, we mean that it is absolutely continuous and hence satisfies the equation above.

Properties

Let X be a continuous r.v. with density function f, then

•
$$f(x) \ge 0$$
 for all $x \in \mathbb{R}$

•
$$\int_{-\infty}^{\infty} f(x) dx = 1$$

• For any fixed constant a, b,

$$P(a \le X \le b) = \int_a^b f(x) \ dx$$

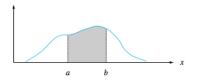


Figure 4.2 $P(a \le X \le b)$ = the area under the density curve between *a* and *b*

MATH 450: Mathematical statistics

• • = • • = •

Definition If X is a continuous random variable with probability density function f, the **expected value** of X is defined by

$$E(X) = \int_{-\infty}^{\infty} x f(x) \, dx.$$

The expected value of X is also called the **mean**, or **mathematical expectation**, or simply the **expectation** of X, and as in the discrete case, sometimes it is denoted by EX, E[X], μ , or μ_X .

- 4 同 ト 4 ヨ ト

Theorem 6.3 Let X be a continuous random variable with probability density function f(x); then for any function $h : \mathbf{R} \to \mathbf{R}$,

$$E[h(X)] = \int_{-\infty}^{\infty} h(x) f(x) \, dx.$$

《曰》《聞》《臣》《臣》。

æ

If X is a random variable, then the function F defined on $(-\infty,\infty)$ by

$$F(t)=P(X\leq t)$$

is called the distribution function of X.

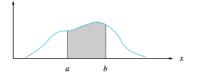


Figure 4.2 $P(a \le X \le b)$ = the area under the density curve between *a* and *b*

MATH 450: Mathematical statistics

→ Ξ →

Distribution function

For continuous random variable:

$$P(a \le X \le b) = \int_a^b f(x) \ dx = F(b) - F(a)$$

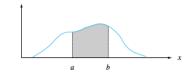


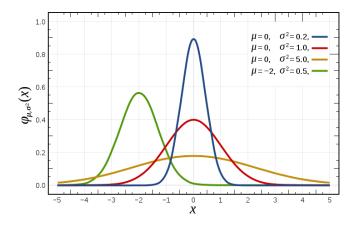
Figure 4.2 $P(a \le X \le b)$ = the area under the density curve between *a* and *b*

Moreover:

$$f(x)=F'(x)$$

MATH 450: Mathematical statistics

 $\mathcal{N}(\mu, \sigma^2)$



 $E(X) = \mu$, $Var(X) = \sigma^2$

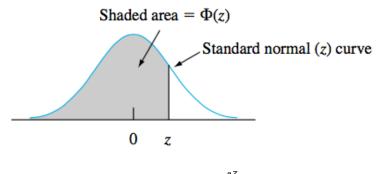
• If Z is a normal random variable with parameters $\mu = 0$ and $\sigma = 1$, then the pdf of Z is

$$f(z)=\frac{1}{\sqrt{2\pi}}e^{-\frac{z^2}{2}}$$

and Z is called the standard normal distribution • E(Z) = 0, Var(Z) = 1

()

 $\Phi(z)$



$$\Phi(z) = P(Z \le z) = \int_{-\infty}^{2} f(y) \, dy$$

MATH 450: Mathematical statistics

æ

三) (

▶ ∢ ⊒ ▶

z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9278	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767

Table A.3 Standard Normal Curve Areas (cont.)

Shifting and scaling normal random variables

If X has a normal distribution with mean μ and standard deviation σ , then

$$Z = \frac{X - \mu}{\sigma}$$

has a standard normal distribution. Thus

$$P(a \le X \le b) = P\left(\frac{a-\mu}{\sigma} \le Z \le \frac{b-\mu}{\sigma}\right)$$
$$= \Phi\left(\frac{b-\mu}{\sigma}\right) - \Phi\left(\frac{a-\mu}{\sigma}\right)$$
$$P(X \le a) = \Phi\left(\frac{a-\mu}{\sigma}\right) \quad P(X \ge b) = 1 - \Phi\left(\frac{b-\mu}{\sigma}\right)$$

伺 と く ヨ と く ヨ と

Problem

Let X be a $\mathcal{N}(3,9)$ random variable. Compute $P[X \leq 5.25]$.

MATH 450: Mathematical statistics

イロト イヨト イヨト イヨト

æ

Descriptive statistics

MATH 450: Mathematical statistics

< □ > < □ > < □

문 문 문

- The Mean
- The Median
- Trimmed Means

The sample mean \overline{x} of observations x_1, x_2, \ldots, x_n is given by

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n} = \frac{\sum_{i=1}^n x_i}{n}$$

MATH 450: Mathematical statistics

A B M A B M

Step 1: ordering the observations from smallest to largest

$$\widetilde{x} = \begin{cases} \text{The single} \\ \text{middle} \\ \text{value if } n \\ \text{is odd} \end{cases} = \left(\frac{n+1}{2}\right)^{\text{th}} \text{ ordered value} \\ \text{The average} \\ \text{of the two} \\ \text{middle} \\ \text{values if } n \\ \text{is even} \end{cases} = \text{average of } \left(\frac{n}{2}\right)^{\text{th}} \text{ and } \left(\frac{n}{2}+1\right)^{\text{th}} \text{ ordered values} \end{cases}$$

Median is not affected by outliers

- A α % trimmed mean is computed by:
 - $\bullet\,$ eliminating the smallest $\alpha\%$ and the largest $\alpha\%$ of the sample
 - averaging what remains
- $\alpha = \mathbf{0} \rightarrow \mathbf{the} \ \mathbf{mean}$
- $\alpha \approx 50 \rightarrow$ the median

The sample variance, denoted by s^2 , is given by

$$s^{2} = \frac{\sum (x_{i} - \bar{x})^{2}}{n - 1} = \frac{S_{xx}}{n - 1}$$

The **sample standard deviation**, denoted by *s*, is the (positive) square root of the variance:

$$s = \sqrt{s^2}$$

• manually create a vector a with entry values

$$a = c(1, 2, 6, 8, 5, 3, -1, 2.1, 0)$$

• create a zero vector with length n = 25

$$a = rep(0, 25)$$

- a[i] is the i^{th} element of a
- manipulate all entries at the same time using 'for' loop

Working with vectors in R

• *rnorm*(n, mean=0, sd=2)

generate a vector of *n* observations withdraw from the normal distribution with mean $\mu = 0$ and standard deviation $\sigma = 2$

- hist(A) produce a histogram plot of the vector A
- boxplot(A)

produce a boxplot of A

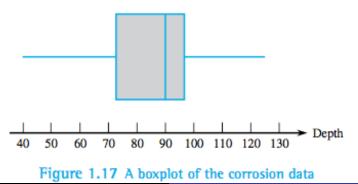
https://www.rdocumentation.org/packages/graphics/ versions/3.6.1/topics/boxplot Order the *n* observations from smallest to largest and separate the smallest half from the largest half; the median \tilde{x} is included in both halves if *n* is odd. Then the **lower fourth** is the median of the smallest half and the **upper fourth** is the median of the largest half. A measure of spread that is resistant to outliers is the **fourth spread** f_s , given by

 $f_s =$ upper fourth – lower fourth

40 52 55 60 70 75 85 85 90 90 92 94 94 95 98 100 115 125 125

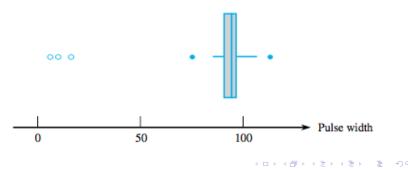
The five-number summary is as follows:

smallest $x_i = 40$ lower fourth = 72.5 $\tilde{x} = 90$ upper fourth = 96.5 largest $x_i = 125$



MATH 450: Mathematical statistics

Any observation farther than $1.5f_s$ from the closest fourth is an **outlier**. An outlier is **extreme** if it is more than $3f_s$ from the nearest fourth, and it is **mild** otherwise.



MATH 450: Mathematical statistics

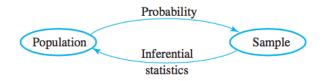
Statistics and sampling distribution

MATH 450: Mathematical statistics

э

- 6.1 Statistics and their distributions
- 6.2 The distribution of the sample mean
- 6.3 The distribution of a linear combination

Order $6.1 \rightarrow 6.3 \rightarrow 6.2$



The random variables $X_1, X_2, ..., X_n$ are said to form a (simple) random sample of size n if

- the X_i 's are independent random variables
- **2** every X_i has the same probability distribution

Two random variables X and Y are said to be independent if for every pair of x and y values,

 $P(X = x, Y = y) = P_X(x) \cdot P_Y(y)$ if the variables are discrete

or

$$f(x, y) = f_X(x) \cdot f_Y(y)$$
 if the variables are continuous

Property

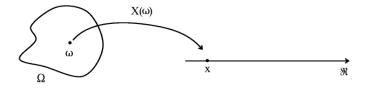
If X and Y are independent, then for any functions g and h

$$E[g(X) \cdot h(Y)] = E[g(X)] \cdot E[h(Y)]$$

A statistic is any quantity whose value can be calculated from sample data

- prior to obtaining data, there is uncertainty as to what value of any particular statistic will result \rightarrow a statistic is a random variable
- the probability distribution of a statistic is referred to as its *sampling distribution*

Random variables



- random variables are used to model uncertainties
- Notations:
 - random variables are denoted by uppercase letters (e.g., X);
 - the calculated/observed values of the random variables are denoted by lowercase letters (e.g., x)

Example of a statistic

- Let X_1, X_2, \ldots, X_n be a random sample of size n
- The sample mean of X_1, X_2, \ldots, X_n , defined by

$$\bar{X}=\frac{X_1+X_2+\ldots X_n}{n},$$

is a statistic

• When the values of x_1, x_2, \ldots, x_n are collected,

$$\bar{x}=\frac{x_1+x_2+\ldots x_n}{n},$$

is a realization of the statistic $ar{X}$

- Let X_1, X_2, \ldots, X_n be a random sample of size n
- The random variable

$$T = X_1 + 2X_2 + 3X_5$$

is a statistic

• When the values of x_1, x_2, \ldots, x_n are collected,

$$t = x_1 + 2x_2 + 3x_5,$$

is a realization of the statistic T

Given statistic T computed from sample X_1, X_2, \ldots, X_n

- Question 1: If we **know** the distribution of X_i's, can we obtain the distribution of T?
- Question 2: If we **don't know** the distribution of X_i's, can we still obtain/approximate the distribution of T?

Real questions: If T is a linear combination of X_i 's, can we

- compute the distribution of T in some easy cases?
- compute the expected value and variance of T?

Real questions: If $T = X_1 + X_2$

- compute the distribution of T in some easy cases
- compute the expected value and variance of T

Consider the distribution P

Let $\{X_1, X_2\}$ be a random sample of size 2 from P, and $T = X_1 + X_2$.

• Compute
$$P[T = 40]$$

/⊒ ► < ∃ ►

Consider the distribution P

Let $\{X_1, X_2\}$ be a random sample of size 2 from P, and $T = X_1 + X_2$.

- Compute P[T = 40]
- **2** Derive the probability mass function of T

Consider the distribution P

$$\begin{array}{c|ccccc} x & 10 & 15 & 20 \\ \hline p(x) & 0.2 & 0.3 & 0.5 \\ \end{array}$$

Let $\{X_1, X_2\}$ be a random sample of size 2 from P, and $T = X_1 + X_2$.

- **(**) *Compute* P[T = 100]
- Our Derive the probability mass function of T
- **③** Compute the expected value and the standard deviation of T

Let $\{X_1, X_2\}$ be a random sample of size 2 from the exponential distribution with parameter λ

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$

and $T = X_1 + X_2$. What is the distribution of T?

→ Ξ →

For continuous random variable:

$$F_X(t) = P(X \le t) = \int_{-\infty}^t f(x) \, dx$$

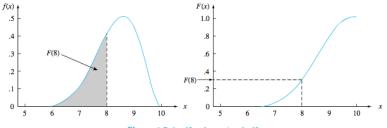


Figure 4.5 A pdf and associated cdf

Moreover:

$$f(x)=F'(x)$$

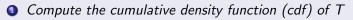
MATH 450: Mathematical statistics

æ

Let $\{X_1, X_2\}$ be a random sample of size 2 from the exponential distribution with parameter λ

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$

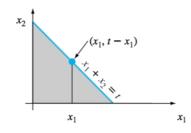
and $T = X_1 + X_2$.



Example 2

$$F_{T_o}(t) = P(X_1 + X_2 \le t) = \iint_{\{(x_1, x_2): x_1 + x_2 \le t\}} f(x_1, x_2) dx_1 dx_2$$

= $\int_0^t \int_0^{t-x_1} \lambda e^{-\lambda x_1} \cdot \lambda e^{-\lambda x_2} dx_2 dx_1 = \int_0^t (\lambda e^{-\lambda x_1} - \lambda e^{-\lambda t}) dx_1$
= $1 - e^{-\lambda t} - \lambda t e^{-\lambda t}$



MATH 450: Mathematical statistics

▲御▶ ▲ 臣▶ ▲ 臣▶

æ

Let $\{X_1, X_2\}$ be a random sample of size 2 from the exponential distribution with parameter $\lambda = 2$

$$f(x) = \begin{cases} 2e^{-2x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$

and $T = X_1 + X_2$.

- Compute the cumulative density function (cdf) of T
- **②** Compute the probability density function (pdf) of T

- If the distribution and the statistic T is simple, try to construct the pmf of the statistic (as in Example 1)
- **2** If the probability density function $f_X(x)$ of X's is known, the
 - try to represent/compute the cumulative distribution (cdf) of ${\cal T}$

$$\mathbb{P}[T \leq t]$$

• take the derivative of the function (with respect to t)

Consider the distribution P

Let $\{X_1, X_2\}$ be a random sample of size 2 from P, and $T = X_1 - X_2$.

Derive the probability mass function of T

Occupate the expected value and the standard deviation of T

Let $\{X_1, X_2\}$ be a random sample of size 2 from the exponential distribution with parameter λ

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$

and $T = X_1 + 2X_2$.

- Compute the cumulative density function (cdf) of T
- **②** Compute the probability density function (pdf) of T