MATH 450: Mathematical statistics

September 19th, 2019

Lecture 8: Method of moments

Week $2 \ldots \ldots$.	Chapter 6: Statistics and Sampling Distributions
Week $4 \ldots \ldots$.	Chapter 7: Point Estimation
Week $6 \ldots \ldots$.	Chapter 8: Confidence Intervals
Week $9 \ldots \ldots$.	Chapter 9: Test of Hypothesis
Week $11 \ldots \ldots$.	Chapter 10: Two-sample inference
Week $12 \ldots \ldots$.	Regression

Chapter 7: Overview

7.1 Point estimate

- unbiased estimator
- mean squared error
7.2 Methods of point estimation
- method of moments
- method of maximum likelihood.
7.3 Sufficient statistic
7.4 Information and Efficiency
- Large sample properties of the maximum likelihood estimator

Question of this chapter

- Given a random sample X_{1}, \ldots, X_{n} from a distribution with pmf/pdf $f(x, \theta)$ parameterized by a parameter θ
- Goal: Estimate θ

Point estimate

$$
f(x, \theta)
$$

Definition

A point estimate $\hat{\theta}$ of a parameter θ is a single number that can be regarded as a sensible value for θ.

$$
\begin{aligned}
\text { population parameter } & \Longrightarrow \text { sample } \\
\theta & \Longrightarrow X_{1}, X_{2}, \ldots, X_{n}
\end{aligned}
$$

Mean Squared Error

- Measuring error of estimation

$$
|\hat{\theta}-\theta| \quad \text { or } \quad(\hat{\theta}-\theta)^{2}
$$

- The error of estimation is random

Definition

The mean squared error of an estimator $\hat{\theta}$ is

$$
E\left[(\hat{\theta}-\theta)^{2}\right]
$$

Bias-variance decomposition

Theorem

$$
\operatorname{MSE}(\hat{\theta})=E\left[(\hat{\theta}-\theta)^{2}\right]=V(\hat{\theta})+(E(\hat{\theta})-\theta)^{2}
$$

Bias-variance decomposition
Mean squared error $=$ variance of estimator $+(\text { bias })^{2}$

Bias-variance decomposition

Low bias
High bias

Unbiased estimators

Definition

A point estimator $\hat{\theta}$ is said to be an unbiased estimator of θ if

$$
E(\hat{\theta})=\theta
$$

for every possible value of θ.

Unbiased estimator
\Leftrightarrow Bias $=0$
\Leftrightarrow Mean squared error $=$ variance of estimator

Example: sample proportion

Problem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample of size n from a Bernoulli distribution with probability of success p

x	0	1
$p(x)$	$1-p$	p

Assume that we estimate p by using the sample mean

$$
\bar{X}=\frac{X_{1}+X_{2}+\ldots X_{n}}{n}
$$

What are the bias and the variance of this estimator?

Example: sample proportion

Problem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample of size n from a Bernoulli distribution with probability of success p

x	0	1
$p(x)$	$1-p$	p

Assume that we estimate p by using the sample mean

$$
\bar{X}=\frac{X_{1}+X_{2}+\ldots X_{n}}{n}
$$

Compute the MSE of this estimator.

Example: sample proportion

Problem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample of size n from a Bernoulli distribution with probability of success p

x	0	1
$p(x)$	$1-p$	p

Assume that we estimate p by using

$$
\tilde{p}=\frac{X_{1}+X_{2}+\ldots+X_{n}+2}{n+4}
$$

Compute the MSE of this estimator.

Example 7.1 and 7.4

Bias-variance decomposition

Low bias
High bias

Minimum variance unbiased estimator (MVUE)

Definition

Among all estimators of θ that are unbiased, choose the one that has minimum variance. The resulting $\hat{\theta}$ is called the minimum variance unbiased estimator (MVUE) of θ.

Recall:

- Mean squared error $=$ variance of estimator $+(\text { bias })^{2}$
- unbiased estimator \Rightarrow bias $=0$
\Rightarrow MVUE has minimum mean squared error among unbiased estimators

What is the best estimator of the mean?

Question: Let X_{1}, \ldots, X_{n} be a random sample from a distribution with mean μ. What is the best estimator of μ ?

Example 7.8

Normal vs. Cauchy

What is the best estimator of the mean?

Question: Let X_{1}, \ldots, X_{n} be a random sample from a distribution with mean μ. What is the best estimator of μ ?

Answer: It depends.

- Normal distribution \rightarrow sample mean \bar{X}
- Cauchy distribution \rightarrow sample median \tilde{X}
- Uniform distribution \rightarrow

$$
\hat{X}_{e}=\frac{\text { largest number }+ \text { smaller number }}{2}
$$

- In all cases, 10% trimmed mean performs pretty well

MVUE of normal distributions

Theorem
 Let X_{1}, \ldots, X_{n} be a random sample from a normal distribution with mean μ. Then the estimator $\hat{\mu}=\bar{X}$ is the MVUE for μ.

Method of moments

Example

Problem

Let X_{1}, \ldots, X_{10} be a random sample from a distribution with pdf

$$
f(x)=\left\{\begin{array}{l}
(\theta+1) x^{\theta} \quad \text { if } 0 \leq x \leq 1 \\
0 \quad \text { otherwise }
\end{array}\right.
$$

A random sample of ten students yields data

$$
\begin{aligned}
& x_{1}=.92, x_{2}=.79, x_{3}=.90, x_{4}=.65, x_{5}=.86, \\
& x_{6}=.47, x_{7}=.73, x_{8}=.97, x_{9}=.94, x_{10}=.77
\end{aligned}
$$

Provide an estimator of θ.

- We can compute $E(X) \rightarrow$ the answer will be a function of θ
- For large n, we have

$$
\bar{X}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}
$$

is close to $E[X]$

- We can compute \bar{x} from the data \rightarrow approximate λ

