MATH 450: Mathematical statistics

September 19th, 2019

Lecture 8: Method of moments

Topics

Week 2 · · · · ·	Chapter 6: Statistics and Sampling Distributions
Week 4 · · · ·	Chapter 7: Point Estimation
Week 6 · · · ·	Chapter 8: Confidence Intervals
Week 9 · · · ·	Chapter 9: Test of Hypothesis
Week 11 · · · ·	Chapter 10: Two-sample inference
Week 12 · · · · ·	Regression

Chapter 7: Overview

- 7.1 Point estimate
 - unbiased estimator
 - mean squared error
- 7.2 Methods of point estimation
 - method of moments
 - method of maximum likelihood.
- 7.3 Sufficient statistic
- 7.4 Information and Efficiency
 - Large sample properties of the maximum likelihood estimator

Question of this chapter

- Given a random sample X_1, \ldots, X_n from a distribution with pmf/pdf $f(x, \theta)$ parameterized by a parameter θ
- Goal: Estimate θ

Point estimate

Definition

A point estimate $\hat{\theta}$ of a parameter θ is a single number that can be regarded as a sensible value for θ .

population parameter
$$\Longrightarrow$$
 sample \Longrightarrow estimate $\theta \Longrightarrow X_1, X_2, \dots, X_n \Longrightarrow \hat{\theta}$

Mean Squared Error

Measuring error of estimation

$$|\hat{\theta} - \theta|$$
 or $(\hat{\theta} - \theta)^2$

The error of estimation is random

Definition

The mean squared error of an estimator $\hat{\theta}$ is

$$E[(\hat{\theta} - \theta)^2]$$

Bias-variance decomposition

Theorem

$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2] = V(\hat{\theta}) + (E(\hat{\theta}) - \theta)^2$$

Bias-variance decomposition

Mean squared error = variance of estimator + $(bias)^2$

Bias-variance decomposition

Unbiased estimators

Definition

A point estimator $\hat{\theta}$ is said to be an unbiased estimator of θ if

$$E(\hat{\theta}) = \theta$$

for every possible value of θ .

Unbiased estimator

$$\Leftrightarrow$$
 Bias = 0

 \Leftrightarrow Mean squared error = variance of estimator

Example: sample proportion

Problem

Let $X_1, X_2, ..., X_n$ be a random sample of size n from a Bernoulli distribution with probability of success p

$$\begin{array}{c|cccc} x & 0 & 1 \\ \hline p(x) & 1-p & p \end{array}$$

Assume that we estimate p by using the sample mean

$$\bar{X} = \frac{X_1 + X_2 + \dots X_n}{n}$$

What are the bias and the variance of this estimator?

Example: sample proportion

Problem

Let $X_1, X_2, ..., X_n$ be a random sample of size n from a Bernoulli distribution with probability of success p

$$\begin{array}{c|ccc} x & 0 & 1 \\ \hline p(x) & 1-p & p \end{array}$$

Assume that we estimate p by using the sample mean

$$\bar{X} = \frac{X_1 + X_2 + \dots X_n}{n}$$

Compute the MSE of this estimator.

Example: sample proportion

Problem

Let $X_1, X_2, ..., X_n$ be a random sample of size n from a Bernoulli distribution with probability of success p

$$\begin{array}{c|ccc} x & 0 & 1 \\ \hline p(x) & 1-p & p \end{array}$$

Assume that we estimate p by using

$$\tilde{p} = \frac{X_1 + X_2 + \ldots + X_n + 2}{n+4}$$

Compute the MSE of this estimator.

Example 7.1 and 7.4

Bias-variance decomposition

Minimum variance unbiased estimator (MVUE)

Definition

Among all estimators of θ that are unbiased, choose the one that has minimum variance. The resulting $\hat{\theta}$ is called the minimum variance unbiased estimator (MVUE) of θ .

Recall:

- Mean squared error = variance of estimator $+ (bias)^2$
- unbiased estimator \Rightarrow bias =0
- \Rightarrow MVUE has minimum mean squared error among unbiased estimators

What is the best estimator of the mean?

Question: Let X_1, \ldots, X_n be a random sample from a distribution with mean μ . What is the best estimator of μ ?

Example 7.8

Normal vs. Cauchy

What is the best estimator of the mean?

Question: Let X_1, \ldots, X_n be a random sample from a distribution with mean μ . What is the best estimator of μ ?

Answer: It depends.

- ullet Normal distribution o sample mean $ar{X}$
- ullet Cauchy distribution o sample median $ilde{X}$
- ullet Uniform distribution o

$$\hat{X}_{e} = \frac{\text{largest number} + \text{smaller number}}{2}$$

• In all cases, 10% trimmed mean performs pretty well

MVUE of normal distributions

Theorem

Let $X_1, ..., X_n$ be a random sample from a normal distribution with mean μ . Then the estimator $\hat{\mu} = \bar{X}$ is the MVUE for μ .

Method of moments

Example

Problem

Let X_1, \ldots, X_{10} be a random sample from a distribution with pdf

$$f(x) = \begin{cases} (\theta + 1)x^{\theta} & \text{if } 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

A random sample of ten students yields data

$$x_1 = .92, x_2 = .79, x_3 = .90, x_4 = .65, x_5 = .86,$$

$$x_6 = .47, x_7 = .73, x_8 = .97, x_9 = .94, x_{10} = .77$$

Provide an estimator of θ .

- We can compute $E(X) \to \text{the answer will be a function of } \theta$
- For large n, we have

$$\bar{X} = \frac{X_1 + X_2 + \ldots + X_n}{n}$$

is close to E[X]

ullet We can compute $ar{x}$ from the data o approximate λ