MATH 450: Mathematical statistics

Oct 1st, 2019

Lecture 11: Sufficient statistic

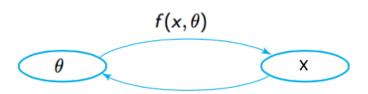
Topics

Chapter 6: Statistics and Sampling Distributions
Chapter 7: Point Estimation
Chapter 8: Confidence Intervals
Chapter 9: Test of Hypothesis
Chapter 10: Two-sample inference
Regression

Chapter 7: Overview

- 7.1 Point estimate
 - unbiased estimator
 - mean squared error
- 7.2 Methods of point estimation
 - method of moments
 - method of maximum likelihood.
- 7.3 Sufficient statistic
- 7.4 Information and Efficiency
 - Large sample properties of the maximum likelihood estimator

Point estimate



Definition

A point estimate $\hat{\theta}$ of a parameter θ is a single number that can be regarded as a sensible value for θ .

population parameter
$$\Longrightarrow$$
 sample \Longrightarrow estimate $\theta \Longrightarrow X_1, X_2, \dots, X_n \Longrightarrow \hat{\theta}$

Mean Squared Error

Measuring error of estimation

$$|\hat{\theta} - \theta|$$
 or $(\hat{\theta} - \theta)^2$

The error of estimation is random

Definition

The mean squared error of an estimator $\hat{\theta}$ is

$$E[(\hat{\theta} - \theta)^2]$$

Bias-variance decomposition

Theorem

$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2] = V(\hat{\theta}) + (E(\hat{\theta}) - \theta)^2$$

Bias-variance decomposition

Mean squared error = variance of estimator + $(bias)^2$

Unbiased estimators

Definition

A point estimator $\hat{\theta}$ is said to be an unbiased estimator of θ if

$$E(\hat{\theta}) = \theta$$

for every possible value of θ .

Unbiased estimator

$$\Leftrightarrow$$
 Bias = 0

 \Leftrightarrow Mean squared error = variance of estimator

Method of moments

Moments

- Let X_1, \ldots, X_n be a random sample from a normal distribution with pmf or pdf f(x).
- For k = 1, 2, 3, ..., the k^{th} population moment, or k^{th} moment of the distribution f(x), is

$$E(X^k)$$

- First moment: the mean
- Second moment: $E(X^2)$

Sample moments

- Let $X_1, ..., X_n$ be a random sample from a distribution with pmf or pdf f(x).
- For k = 1, 2, 3, ..., the k^{th} sample moment is

$$\frac{X_1^k + X_2^k + \ldots + X_n^k}{n}$$

The law of large numbers provides that when $n \to \infty$

$$\frac{X_1^k + X_2^k + \ldots + X_n^k}{n} \to E(X^k)$$

Method of moments: ideas

• Let X_1, \ldots, X_n be a random sample from a distribution with pmf or pdf

$$f(x; \theta_1, \theta_2, \ldots, \theta_m)$$

• Assume that for $k = 1, \ldots, m$

$$\hat{u}_k = \frac{X_1^k + X_2^k + \ldots + X_n^k}{n} = E(X^k)$$

• Solve the system of equations for $\theta_1, \theta_2, \dots, \theta_m$

Method of maximum likelihood

Random sample

Let $X_1, X_2, ..., X_n$ be a random sample of size n from a distribution with density function $f_X(x)$.

Then the density of the joint distribution of $(X_1, X_2, ..., X_n)$ is

$$f_{joint}(x_1, x_2, \dots, x_n) = \prod_{i=1}^n f_X(x_i)$$

Maximum likelihood estimator

• Let $X_1, X_2, ..., X_n$ have joint pmf or pdf

$$f_{joint}(x_1, x_2, \ldots, x_n; \theta)$$

where θ is unknown.

- When x_1, \ldots, x_n are the observed sample values and this expression is regarded as a function of θ , it is called the **likelihood function**.
- The maximum likelihood estimates θ_{ML} are the value for θ that maximize the likelihood function:

$$f_{joint}(x_1, x_2, \dots, x_n; \theta_{ML}) \ge f_{joint}(x_1, x_2, \dots, x_n; \theta) \quad \forall \theta$$

How to find the MLE?

- Step 1: Write down the likelihood function.
- Step 2: Can you find the maximum of this function?
- Step 3: Try taking the logarithm of this function.
- Step 4: Find the maximum of this new function.

To find the maximum of a function of θ :

- ullet compute the derivative of the function with respect to heta
- set this expression of the derivative to 0
- solve the equation

Connecting everything

Problem

Let X_1, X_2, \dots, X_n represent a random sample from a distribution with pdf

$$f(x,\theta) = \frac{2x}{\theta+1}e^{-x^2/(\theta+1)}, \quad x > 0$$

- ullet Derive the maximum-likelihood estimator for parameter heta
- Given that

$$E(X^2-1)=\theta,$$

construct an estimator of θ based on the method of moments.

Problem

Let $0 < \theta < \infty$ and X_1, X_2, \dots, X_n sample from a distribution with density function

$$f(x;\theta) = \frac{1}{\theta}, \quad 0 \le x \le \theta.$$

- Construct an estimator of θ by the method of moments.
- Compute the mean squared error (MSE) of this estimator.

Problem

Consider a random sample X_1, \ldots, X_n from the pdf

$$f(x) = \frac{1 + \theta x}{2} \qquad -1 \le x \le 1$$

Show that $\hat{\theta} = 3\bar{X}$ is an unbiased estimator of θ .

Sufficient statistic

Your professor stores a dataset x₁, x₂, ..., x_n in his computer.
He says it is a random sample from the exponential distribution

$$f_X(x) = \lambda e^{-\lambda x}, \quad x \ge 0$$

where λ is an unknown parameter. He wants you to work on the dataset and give him a good estimate of λ

- Assume that the sample size is very large, $n = 10^{20}$, and you could not copy the whole dataset
- You can compute any summary statistics of the dataset using the computer, but the lab is closing in 5 minutes
- What will you do?

• If you are using the method of moments

$$\bar{x} = \frac{x_1 + x_2 + \ldots + x_n}{n}$$

If you are using the method of maximum likelihood

$$L(\lambda) = \lambda^n e^{-\lambda(x_1 + x_2 + \dots + x_n)}$$

• In both case, it seems that you need to only save n and $t = x_1 + x_2 + \ldots + x_n$

Conditional probability

 For discrete random variables, the conditional probability mass function of Y given the occurrence of the value x of X can be written according to its definition as:

$$P(Y = y | X = x) = \frac{P(Y = y, X = x)}{P(X = x)}$$

 For continuous random variables, the conditional probability of Y given the occurrence of the value x of X has density function

$$f_Y(y|X=x) = \frac{f_{joint}(y,x)}{f(x)}$$

Some observations

- Basic estimation problem:
 - Given a density function $f(x, \theta)$ and a sample X_1, X_2, \dots, X_n
 - Construct a statistic $\hat{\theta} = T(X_1, X_2, \dots, X_n)$
 - Different methods lead to different estimates with different accuracies
- If, however, the distribution of $t(X_1, X_2, ..., X_n)$ does not depend on θ , then it is no good
- Similarly, if the conditional probability

$$P(X_1, X_2, \ldots, X_n | T)$$

does not depend on θ , then this means that $T(X_1, X_2, \dots, X_n)$ contained all the information to estimate θ

Sufficient statistic

Definition

A statistic $T=t(X_1,\ldots,X_n)$ is said to be sufficient for making inferences about a parameter θ if the joint distribution of X_1,X_2,\ldots,X_n given that T=t does not depend upon θ for every possible value t of the statistic T.

Fisher-Neyman factorization theorem

Theorem

T is sufficient for θ if and only if nonnegative functions g and h can be found such that

$$f(x_1, x_2, ..., x_n; \theta) = g(t(x_1, x_2, ..., x_n), \theta) \cdot h(x_1, x_2, ..., x_n)$$

i.e. the joint density can be factored into a product such that one factor, h does not depend on θ ; and the other factor, which does depend on θ , depends on x only through t(x).

Problem

Let $X_1, X_2, ..., X_n$ be a random sample of from a Poisson distribution with parameter λ

$$f(x,\lambda) = \frac{1}{x!}e^{-\lambda x} \qquad x = 0, 1, 2, \dots,$$

where λ is unknown.

Find a sufficient statistic of λ .

Problem

Let $X_1, X_2, ..., X_n$ be a random sample of from a Poisson distribution with parameter λ

$$f(x) = \begin{cases} \frac{\beta}{x^{\beta+1}} & \text{if } x > 1\\ 0 & \text{otherwise} \end{cases}$$

where β is unknown.

Find a sufficient statistic of β .

Jointly sufficient statistic

Definition

The m statistics $T_1 = t_1(X_1, \ldots, X_n)$, $T_2 = t_2(X_1, \ldots, X_n)$, \ldots , $T_m = t_m(X_1, \ldots, X_n)$ are said to be jointly sufficient for the parameters $\theta_1, \theta_2, \ldots, \theta_k$ if the joint distribution of X_1, \ldots, X_n given that

$$T_1 = t_1, T_2 = t = 2, \dots, T_m = t_m$$

does not depend upon $\theta_1, \theta_2, \dots, \theta_k$ for every possible value t_1, t_2, \dots, t_m of the statistics.

Fisher-Neyman factorization theorem

Theorem

 T_1, T_2, \ldots, T_m are sufficient for $\theta_1, \theta_2, \ldots, \theta_k$ if and only if nonnegative functions g and h can be found such that

$$f(x_1, x_2, \dots, x_n; \theta_1, \theta_2, \dots, \theta_k) = g(t_1, t_2, \dots, t_m, \theta_1, \theta_2, \dots, \theta_k) \cdot h(x_1, x_2, \dots, x_n)$$

• Let $X_1, X_2, ..., X_n$ be a random sample from $\mathcal{N}(\mu, \sigma^2)$

$$f_X(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{(x-\mu)^2}{2\sigma^2}}$$

Prove that

$$T_1 = X_1 + \ldots + X_n, \qquad T_2 = X_1^2 + X_2^2 + \ldots + X_n^2$$

are jointly sufficient for the two parameters μ and σ .

• Let $X_1, X_2, ..., X_n$ be a random sample from a Gamma distribution

$$f_X(x) = \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta}$$

where α, β is unknown.

Prove that

$$T_1 = X_1 + \ldots + X_n, \qquad T_2 = \prod_{i=1}^n X_i$$

are jointly sufficient for the two parameters α and β .

