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Topics

Week 2 · · · · · ·• Chapter 6: Statistics and Sampling
Distributions

Week 4 · · · · · ·• Chapter 7: Point Estimation

Week 7 · · · · · ·• Chapter 8: Confidence Intervals

Week 10 · · · · · ·• Chapter 9: Test of Hypothesis

Week 11 · · · · · ·• Chapter 10: Two-sample inference

Week 13 · · · · · ·• Regression
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Chapter 7: Overview

7.1 Point estimate

unbiased estimator
mean squared error

7.2 Methods of point estimation

method of moments
method of maximum likelihood.

7.3 Sufficient statistic

7.4 Information and Efficiency
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Sufficient statistic
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Some observations

Basic estimation problem:

Given a density function f (x , θ) and a sample X1,X2, . . . ,Xn

Construct a statistic θ̂ = T (X1,X2, . . . ,Xn)
Different methods lead to different estimates with different
accuracies

If, however, the distribution of t(X1,X2, . . . ,Xn) does not
depend on θ, then it is no good

Similarly, if the conditional probability

P(X1,X2, . . . ,Xn|T )

does not depend on θ, then this means that
T (X1,X2, . . . ,Xn) contained all the information to estimate θ
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Sufficient statistic

Definition

A statistic T = t(X1, . . . ,Xn) is said to be sufficient for making
inferences about a parameter θ if the joint distribution of
X1,X2, . . . ,Xn given that T = t does not depend upon θ for every
possible value t of the statistic T .
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Fisher-Neyman factorization theorem

Theorem

T is sufficient for θ if and only if nonnegative functions g and h
can be found such that

f (x1, x2, . . . , xn; θ) = g(t(x1, x2, . . . , xn), θ) · h(x1, x2, . . . , xn)

i.e. the joint density can be factored into a product such that one
factor, h does not depend on θ; and the other factor, which does
depend on θ, depends on x only through t(x).
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Example 1

Problem

Let X1,X2, ...,Xn be a random sample of from a Poisson
distribution with parameter λ

f (x , λ) =
1

x!
e−λx x = 0, 1, 2, . . . ,

where λ is unknown.
Find a sufficient statistic of λ.
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Example 2

Problem

Let X1,X2, ...,Xn be a random sample of from a Poisson
distribution with parameter λ

f (x) =

{
β

xβ+1 if x > 1

0 otherwise

where β is unknown.
Find a sufficient statistic of β.
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Jointly sufficient statistic

Definition

The m statistics T1 = t1(X1, . . . ,Xn), T2 = t2(X1, . . . ,Xn), . . .,
Tm = tm(X1, . . . ,Xn) are said to be jointly sufficient for the
parameters θ1, θ2, . . . , θk if the joint distribution of X1, . . . ,Xn

given that
T1 = t1,T2 = t = 2, . . . ,Tm = tm

does not depend upon θ1, θ2, . . . , θk for every possible value
t1, t2, . . . , tm of the statistics.
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Fisher-Neyman factorization theorem

Theorem

T1,T2, . . . ,Tm are sufficient for θ1, θ2, . . . , θk if and only if
nonnegative functions g and h can be found such that

f (x1, x2, . . . , xn; θ1, θ2, . . . , θk) = g(t1, t2, . . . , tm, θ1, θ2, . . . , θk)

· h(x1, x2, . . . , xn)

MATH 450: Mathematical statistics



Example 3

Let X1,X2, ...,Xn be a random sample from N (µ, σ2)

fX (x) =
1√
2πσ

e−
(x−µ)2

2σ2

Prove that

T1 = X1 + . . .+ Xn, T2 = X 2
1 + X 2

2 + . . .+ X 2
n

are jointly sufficient for the two parameters µ and σ.
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Example 4

Let X1,X2, ...,Xn be a random sample from a Gamma
distribution

fX (x) =
1

Γ(α)βα
xα−1e−x/β

where α, β is unknown.

Prove that

T1 = X1 + . . .+ Xn, T2 =
n∏

i=1

Xi

are jointly sufficient for the two parameters α and β.
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Information
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Fisher information

Definition

The Fisher information I (θ) in a single observation from a pmf or

pdf f (x ; θ) is the variance of the random variable U = ∂ log f (X ,θ)
∂θ ,

which is

I (θ) = Var

[
∂ log f (X , θ)

∂θ

]
Note: We always have E [U] = 0
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Fisher information

We have ∑
x

f (x , θ) = 1 ∀θ

Thus

E [U] = E

[
∂ log f (X , θ)

∂θ

]
=
∑
x

∂ log f (x , θ)

∂θ
f (x , θ)

=
∑
x

∂f (x , θ)

∂θ
= 0
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Example

Problem

Let X be distributed by

x 0 1

f (x , θ) 1− θ θ

Compute I (X , θ).

Hint:

If x = 1, then f (x , θ) = θ. Thus

u(x) =
∂ log f (x , θ)

∂θ
=

1

θ

How about x = 0?
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Example

Problem

Let X be distributed by

x 0 1

f (x , θ) 1− θ θ

Compute I (X , θ).

We have

Var [U] = E [U2]− (E [U])2 = E [U2]

=
∑
x=0,1

U2(x)f (x , θ)

=
1

(1− θ)2
· (1− θ) +

1

θ2
· θ
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The Cramer-Rao Inequality

Theorem

Assume a random sample X1,X2, ...,Xn from the distribution with
pmf or pdf f (x , θ) such that the set of possible values does not
depend on θ. If the statistic T = t(X1,X2, ...,Xn) is an unbiased
estimator for the parameter θ, then

Var(T ) ≥ 1

n · I (θ)

MATH 450: Mathematical statistics



Proof for n = 1

Recall that E [U] = 0 and E [T ] = θ (since T is an unbiased
estimator of θ) we have

Cov(T ,U) = E [TU]− E [U] · E [T ]

=
∑
x

t(x)
∂ log f (x , θ)

∂θ
f (x , θ)

=
∑
x

t(x)
∂f (x , θ)

∂θ

1

f (x , θ)
f (x , θ)

=
∂

∂θ

(∑
x

t(x)f (x , θ)

)
= 1
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Proof for n = 1

The Cauchy–Schwarz inequality shows that

Cov(T ,U) ≤
√

Var(T ) · Var(U)

which implies

Var(T ) ≥ 1

I (θ)
.
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Efficiency

Theorem

Let T = t(X1,X2, ...,Xn) is an unbiased estimator for the
parameter θ, the ratio of the lower bound to the variance of T is
its efficiency

Efficiency =
1

nI (θ)V (T )
≤ 1

T is said to be an efficient estimator if T achieves the Cramer–Rao
lower bound (i.e., the efficiency is 1).

Note: An efficient estimator is a minimum variance unbiased
(MVUE) estimator.
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Large Sample Properties of the MLE

Theorem

Given a random sample X1,X2, ...,Xnfrom the distribution with
pmf or pdf f (x , θ) such that the set of possible values does not
depend on θ. Then for large n the maximum likelihood estimator θ̂
has approximately a normal distribution with mean θ and variance

1
n·I (θ) .

More precisely, the limiting distribution of
√

n(θ̂ − θ) is normal
with mean 0 and variance 1/I (θ).
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