MATH 450: Mathematical statistics

Oct 3rd, 2019
Lecture 12: Information

Week 2	Chapter 6: Statistics and Sampling Distributions
Week 4	Chapter 7: Point Estimation
Week 7	Chapter 8: Confidence Intervals
Week 10	Chapter 9: Test of Hypothesis
Week 11	Chapter 10: Two-sample inference
Week 13	Regression

Chapter 7: Overview

7.1 Point estimate

- unbiased estimator
- mean squared error
7.2 Methods of point estimation
- method of moments
- method of maximum likelihood.
7.3 Sufficient statistic
7.4 Information and Efficiency

Sufficient statistic

- Basic estimation problem:
- Given a density function $f(x, \theta)$ and a sample $X_{1}, X_{2}, \ldots, X_{n}$
- Construct a statistic $\hat{\theta}=T\left(X_{1}, X_{2}, \ldots, X_{n}\right)$
- Different methods lead to different estimates with different accuracies
- If, however, the distribution of $t\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ does not depend on θ, then it is no good
- Similarly, if the conditional probability

$$
P\left(X_{1}, X_{2}, \ldots, X_{n} \mid T\right)
$$

does not depend on θ, then this means that $T\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ contained all the information to estimate θ

Sufficient statistic

Definition

A statistic $T=t\left(X_{1}, \ldots, X_{n}\right)$ is said to be sufficient for making inferences about a parameter θ if the joint distribution of $X_{1}, X_{2}, \ldots, X_{n}$ given that $T=t$ does not depend upon θ for every possible value t of the statistic T.

Fisher-Neyman factorization theorem

Theorem

T is sufficient for θ if and only if nonnegative functions g and h can be found such that

$$
f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)=g\left(t\left(x_{1}, x_{2}, \ldots, x_{n}\right), \theta\right) \cdot h\left(x_{1}, x_{2}, \ldots, x_{n}\right)
$$

i.e. the joint density can be factored into a product such that one factor, h does not depend on θ; and the other factor, which does depend on θ, depends on x only through $t(x)$.

Example 1

Problem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample of from a Poisson distribution with parameter λ

$$
f(x, \lambda)=\frac{1}{x!} e^{-\lambda x} \quad x=0,1,2, \ldots
$$

where λ is unknown.
Find a sufficient statistic of λ.

Example 2

Problem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample of from a Poisson distribution with parameter λ

$$
f(x)= \begin{cases}\frac{\beta}{x^{\beta+1}} & \text { if } x>1 \\ 0 & \text { otherwise }\end{cases}
$$

where β is unknown.
Find a sufficient statistic of β.

Jointly sufficient statistic

Definition

The m statistics $T_{1}=t_{1}\left(X_{1}, \ldots, X_{n}\right), T_{2}=t_{2}\left(X_{1}, \ldots, X_{n}\right), \ldots$, $T_{m}=t_{m}\left(X_{1}, \ldots, X_{n}\right)$ are said to be jointly sufficient for the parameters $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$ if the joint distribution of X_{1}, \ldots, X_{n} given that

$$
T_{1}=t_{1}, T_{2}=t=2, \ldots, T_{m}=t_{m}
$$

does not depend upon $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$ for every possible value $t_{1}, t_{2}, \ldots, t_{m}$ of the statistics.

Fisher-Neyman factorization theorem

Theorem

$T_{1}, T_{2}, \ldots, T_{m}$ are sufficient for $\theta_{1}, \theta_{2}, \ldots, \theta_{k}$ if and only if nonnegative functions g and h can be found such that

$$
\begin{aligned}
f\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta_{1}, \theta_{2}, \ldots, \theta_{k}\right)= & g\left(t_{1}, t_{2}, \ldots, t_{m}, \theta_{1}, \theta_{2}, \ldots, \theta_{k}\right) \\
& \cdot h\left(x_{1}, x_{2}, \ldots, x_{n}\right)
\end{aligned}
$$

Example 3

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from $\mathcal{N}\left(\mu, \sigma^{2}\right)$

$$
f_{X}(x)=\frac{1}{\sqrt{2 \pi} \sigma} e^{-\frac{(x-\mu)^{2}}{2 \sigma^{2}}}
$$

- Prove that

$$
T_{1}=X_{1}+\ldots+X_{n}, \quad T_{2}=X_{1}^{2}+X_{2}^{2}+\ldots+X_{n}^{2}
$$

are jointly sufficient for the two parameters μ and σ.

Example 4

- Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a Gamma distribution

$$
f_{X}(x)=\frac{1}{\Gamma(\alpha) \beta^{\alpha}} x^{\alpha-1} e^{-x / \beta}
$$

where α, β is unknown.

- Prove that

$$
T_{1}=X_{1}+\ldots+X_{n}, \quad T_{2}=\prod_{i=1}^{n} X_{i}
$$

are jointly sufficient for the two parameters α and β.

Information

Fisher information

Definition

The Fisher information $I(\theta)$ in a single observation from a pmf or pdf $f(x ; \theta)$ is the variance of the random variable $U=\frac{\partial \log f(X, \theta)}{\partial \theta}$, which is

$$
I(\theta)=\operatorname{Var}\left[\frac{\partial \log f(X, \theta)}{\partial \theta}\right]
$$

Note: We always have $E[U]=0$

We have

$$
\sum_{x} f(x, \theta)=1 \quad \forall \theta
$$

Thus

$$
\begin{aligned}
E[U] & =E\left[\frac{\partial \log f(X, \theta)}{\partial \theta}\right] \\
& =\sum_{x} \frac{\partial \log f(x, \theta)}{\partial \theta} f(x, \theta) \\
& =\sum_{x} \frac{\partial f(x, \theta)}{\partial \theta}=0
\end{aligned}
$$

Example

Problem

Let X be distributed by

x	0	1
$f(x, \theta)$	$1-\theta$	θ

Compute $I(X, \theta)$.
Hint:

- If $x=1$, then $f(x, \theta)=\theta$. Thus

$$
u(x)=\frac{\partial \log f(x, \theta)}{\partial \theta}=\frac{1}{\theta}
$$

- How about $x=0$?

Example

Problem

Let X be distributed by

x	0	1
$f(x, \theta)$	$1-\theta$	θ

Compute $I(X, \theta)$.
We have

$$
\begin{aligned}
\operatorname{Var}[U] & =E\left[U^{2}\right]-(E[U])^{2}=E\left[U^{2}\right] \\
& =\sum_{x=0,1} U^{2}(x) f(x, \theta) \\
& =\frac{1}{(1-\theta)^{2}} \cdot(1-\theta)+\frac{1}{\theta^{2}} \cdot \theta
\end{aligned}
$$

Theorem

Assume a random sample $X_{1}, X_{2}, \ldots, X_{n}$ from the distribution with pmf or pdf $f(x, \theta)$ such that the set of possible values does not depend on θ. If the statistic $T=t\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is an unbiased estimator for the parameter θ, then

$$
\operatorname{Var}(T) \geq \frac{1}{n \cdot I(\theta)}
$$

Recall that $E[U]=0$ and $E[T]=\theta$ (since T is an unbiased estimator of θ) we have

$$
\begin{aligned}
\operatorname{Cov}(T, U) & =E[T U]-E[U] \cdot E[T] \\
& =\sum_{x} t(x) \frac{\partial \log f(x, \theta)}{\partial \theta} f(x, \theta) \\
& =\sum_{x} t(x) \frac{\partial f(x, \theta)}{\partial \theta} \frac{1}{f(x, \theta)} f(x, \theta) \\
& =\frac{\partial}{\partial \theta}\left(\sum_{x} t(x) f(x, \theta)\right)=1
\end{aligned}
$$

Proof for $n=1$

The Cauchy-Schwarz inequality shows that

$$
\operatorname{Cov}(T, U) \leq \sqrt{\operatorname{Var}(T) \cdot \operatorname{Var}(U)}
$$

which implies

$$
\operatorname{Var}(T) \geq \frac{1}{I(\theta)}
$$

Heisenberg's Uncertainty Principle

The more accurately you know the position (i.e., the smaller Δx is), the less accurately you know the momentum (i.e., the larger Δp is); and vice versa

Efficiency

Theorem

Let $T=t\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is an unbiased estimator for the parameter θ, the ratio of the lower bound to the variance of T is its efficiency

$$
\text { Efficiency }=\frac{1}{n l(\theta) V(T)} \leq 1
$$

T is said to be an efficient estimator if T achieves the Cramer-Rao lower bound (i.e., the efficiency is 1).

Note: An efficient estimator is a minimum variance unbiased (MVUE) estimator.

Large Sample Properties of the MLE

Theorem

Given a random sample $X_{1}, X_{2}, \ldots, X_{n}$ from the distribution with pmf or pdf $f(x, \theta)$ such that the set of possible values does not depend on θ. Then for large n the maximum likelihood estimator $\hat{\theta}$ has approximately a normal distribution with mean θ and variance $\frac{1}{n \cdot l(\theta)}$.
More precisely, the limiting distribution of $\sqrt{n}(\hat{\theta}-\theta)$ is normal with mean 0 and variance $1 / I(\theta)$.

