MATH 450: Mathematical statistics

Oct 8th, 2019

Lecture 13: Confidence intervals

MATH 450: Mathematical statistics

Week 2	Chapter 6: Statistics and Sampling Distributions						
Week 4 · · · · ·	Chapter 7: Point Estimation						
Week 7 · · · · ·	Chapter 8: Confidence Intervals						
Week 10 · · · · ·	Chapter 9: Test of Hypothesis						
Week 11 · · · · •	Chapter 10: Two-sample inference						
Week 13 · · · · •	Regression						

★ E ► < E ►</p>

æ

Chapter 7: Overview

7.1 Point estimate

- unbiased estimator
- mean squared error
- 7.2 Methods of point estimation
 - method of moments
 - method of maximum likelihood.
- 7.3 Sufficient statistic
- 7.4 Information and Efficiency

Information

MATH 450: Mathematical statistics

Definition

The Fisher information $I(\theta)$ in a single observation from a pmf or pdf $f(x; \theta)$ is the variance of the random variable $U = \frac{\partial \log f(X, \theta)}{\partial \theta}$, which is

$$I(\theta) = Var\left[\frac{\partial \log f(X,\theta)}{\partial \theta}\right]$$

Note: We always have E[U] = 0

Problem

Let X be distributed by

$$\begin{array}{c|cc} x & 0 & 1 \\ \hline f(x,\theta) & 1-\theta & \theta \end{array}$$

Compute $I(X, \theta)$.

Hint:

• If
$$x = 1$$
, then $f(x, \theta) = \theta$. Thus

$$u(x) = \frac{\partial \log f(x,\theta)}{\partial \theta} = \frac{1}{\theta}$$

• How about x = 0?

돈 돈 돈

Example

Problem

Let X be distributed by

$$\begin{array}{c|c} x & 0 & 1 \\ \hline f(x,\theta) & 1-\theta & \theta \end{array}$$

Compute $I(X, \theta)$.

We have

$$Var[U] = E[U^2] - (E[U])^2 = E[U^2]$$
$$= \sum_{x=0,1} U^2(x)f(x,\theta)$$
$$= \frac{1}{(1-\theta)^2} \cdot (1-\theta) + \frac{1}{\theta^2} \cdot \theta$$

문 문 문

Theorem

Assume a random sample $X_1, X_2, ..., X_n$ from the distribution with pmf or pdf $f(x, \theta)$ such that the set of possible values does not depend on θ . If the statistic $T = t(X_1, X_2, ..., X_n)$ is an unbiased estimator for the parameter θ , then

$$Var(T) \geq rac{1}{n \cdot I(heta)}$$

Recall that E[U] = 0 and $E[T] = \theta$ (since T is an unbiased estimator of θ) we have

$$Cov(T, U) = E[TU] - E[U] \cdot E[T]$$
$$= \sum_{x} t(x) \frac{\partial \log f(x, \theta)}{\partial \theta} f(x, \theta)$$
$$= \sum_{x} t(x) \frac{\partial f(x, \theta)}{\partial \theta} \frac{1}{f(x, \theta)} f(x, \theta)$$
$$= \frac{\partial}{\partial \theta} \left(\sum_{x} t(x) f(x, \theta) \right) = 1$$

.

э

The Cauchy–Schwarz inequality shows that

$$Cov(T, U) \leq \sqrt{Var(T) \cdot Var(U)}$$

which implies

$$Var(T) \geq rac{1}{I(heta)}.$$

∃ ► < ∃ ►</p>

Heisenberg's Uncertainty Principle

The more accurately you know the position (i.e., the smaller Δx is), the less accurately you know the momentum (i.e., the larger Δp is); and vice versa

MATH 450: Mathematical statistics

| 4 同 ト 4 ヨ ト 4 ヨ ト

Theorem

Let $T = t(X_1, X_2, ..., X_n)$ is an unbiased estimator for the parameter θ , the ratio of the lower bound to the variance of T is its efficiency

$$Efficiency = \frac{1}{nI(\theta)V(T)} \le 1$$

T is said to be an efficient estimator if T achieves the Cramer–Rao lower bound (i.e., the efficiency is 1).

Note: An efficient estimator is a minimum variance unbiased (MVUE) estimator.

Theorem

Given a random sample $X_1, X_2, ..., X_n$ from the distribution with pmf or pdf $f(x, \theta)$ such that the set of possible values does not depend on θ . Then for large n the maximum likelihood estimator $\hat{\theta}$ has approximately a normal distribution with mean θ and variance $\frac{1}{n \cdot l(\theta)}$. More precisely, the limiting distribution of $\sqrt{n}(\hat{\theta} - \theta)$ is normal

with mean 0 and variance $1/I(\theta)$.

Chapter 8: Confidence intervals

æ

8.1 Basic properties of confidence intervals (CIs)

- Interpreting Cls
- General principles to derive CI
- 8.2 Large-sample confidence intervals for a population mean
 - Using the Central Limit Theorem to derive CIs
- 8.3 Intervals based on normal distribution
 - Using Student's t-distribution
- 8.4 CIs for standard deviation

- Let $X_1, X_2, ..., X_n$ be a random sample from a distribution $f(x, \theta)$
- In Chapter 7, we learnt methods to construct an estimate $\hat{\theta}$ of θ
- Goal: we want to indicate the degree of uncertainty associated with this random prediction
- One way to do so is to construct a *confidence interval* $[\hat{\theta} a, \hat{\theta} + b]$ such that

$$P[heta \in [\hat{ heta} - a, \hat{ heta} + b]] = 95\%$$

Confidence interval

MATH 450: Mathematical statistics

æ

If X_1, X_2, \ldots, X_n is a random sample from a distribution $f(x, \theta)$, then

- Find a random variable $Y = h(X_1, X_2, ..., X_n; \theta)$ such that the probability distribution of Y does not depend on θ or on any other unknown parameters.
- Find constants *a*, *b* such that

$$P[a < h(X_1, X_2, \dots, X_n; \theta) < b] = 0.95$$

• Manipulate these inequalities to isolate θ

$$P[\ell(X_1, X_2, \dots, X_n) < \theta < u(X_1, X_2, \dots, X_n)] = 0.95$$

Problem

Suppose the sediment density (g/cm) of a randomly selected specimen from a certain region is normally distributed with mean μ and standard deviation 0.85.

If a random sample of 25 specimens is selected, with sample average \bar{X} .

• Find a number a such that

$$P[-a < \bar{X} - \mu < a] = 0.95$$

									×-7	×	
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09	
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359	
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753	
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141	
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517	
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879	
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224	
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549	
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852	
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133	
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389	
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621	
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830	
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015	
1.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177	
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9278	.9292	.9306	.9319	
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441	
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545	
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633	
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706	
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767	
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817	
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857	
2.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890	
2.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916	
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936	
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952	
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964	
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974	
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981	
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986	
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990	
3.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993	
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995	
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997	

MATH 450: Mathematical statistics

문 🛌 문

Problem

Suppose the sediment density (g/cm) of a randomly selected specimen from a certain region is normally distributed with mean μ and standard deviation 0.85.

• If a random sample of 25 specimens is selected, with sample average \bar{X} . Find a such that

$$P[-a < \bar{X} - \mu < a] = 0.95$$

If $\bar{x} = 2.65$, then we know with confidence 95% that

$$\mu \in (2.65 - a, 2.65 + a)$$

 \rightarrow This is a confidence interval for the population mean μ

Problem

Suppose the sediment density (g/cm) of a randomly selected specimen from a certain region is normally distributed with mean μ and standard deviation 0.85.

If a random sample of 25 specimens is selected, with sample average \bar{X} . Find a number b such that

$$P[\bar{X} < b] = 0.95$$

8.1: Normal distribution with know σ

- Assumptions:
 - Normal distribution
 - σ is known
- 95% confidence interval
 If after observing X₁ = x₁, X₂ = x₂,..., X_n = x_n, we compute the observed sample mean x̄. Then

$$\left(ar{x}-1.96rac{\sigma}{\sqrt{n}},ar{x}+1.96rac{\sigma}{\sqrt{n}}
ight)$$

is a 95% confidence interval of μ

z-critical value

NOTATION z_{α} will denote the value on the measurement axis for which α of the area under the z curve lies to the right of z_{α} . (See Figure 4.19.)

For example, $z_{.10}$ captures upper-tail area .10 and $z_{.01}$ captures upper-tail area .01.

Figure 4.19 z_{α} notation illustrated

Since α of the area under the standard normal curve lies to the right of z_{α} , $1 - \alpha$ of the area lies to the left of z_{α} . Thus z_{α} is the $100(1 - \alpha)$ th percentile of the standard normal distribution. By symmetry the area under the standard normal curve to the left of $-z_{\alpha}$ is also α . The z_{α} 's are usually referred to as **z** critical values. Table 4.1 lists the most useful standard normal percentiles and z_{α} values.

< ロ > < 同 > < 三 > < 三 >

$100(1-\alpha)\%$ confidence interval

Figure 8.4 $P(-z_{\alpha/2} \le Z \le z_{\alpha/2}) = 1 - \alpha$

MATH 450: Mathematical statistics

▶ ★ 문 ► ★ 문 ► ...

3

A 100(1 – α)% confidence interval for the mean μ of a normal population when the value of σ is known is given by

$$\left(\bar{x} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right)$$
(8.5)

or, equivalently, by $\overline{x} \pm z_{\alpha/2} \cdot \sigma / \sqrt{n}$.

• • = • • = •

- Section 8.1
 - Normal distribution
 - σ is known
- Section 8.2
 - Normal distribution
 - ightarrow use Central Limit Theorem ightarrow needs n>30
 - σ is known
 - \rightarrow replace σ by $s \rightarrow$ needs n > 40
- Section 8.3
 - Normal distribution
 - σ is known
 - \rightarrow Introducing *t*-distribution

Interpreting confidence intervals

95% confidence interval: If we repeat the experiment many times, the interval contains μ about 95% of the time

Interpreting confidence intervals

Writing

$$P[\mu \in (ar{X} - 1.7, ar{X} + 1.7)] = 95\%$$

is okay.

• If $\bar{x} = 2.7$, writing

$$P[\mu \in (1, 4.4)] = 95\%$$

is NOT okay.

- Saying $\mu \in (1, 4.4)$ with confidence level 95% is okay.
- Saying "if we repeat the experiment many times, the interval contains μ about 95% of the time" is perfect.