MATH 450: Mathematical statistics

Oct 10th, 2019

Lecture 14: Large-sample Cls of the population mean

Countdown to midterm: 14 days

Week 2	Chapter 6: Statistics and Sampling Distributions
Week 4	Chapter 7: Point Estimation
Week 7	Chapter 8: Confidence Intervals
Week 10	Chapter 9: Test of Hypothesis
Week 11	Chapter 10: Two-sample inference
Week 13	Regression

Overview

8.1 Basic properties of confidence intervals (Cls)

- Interpreting Cls
- General principles to derive Cl
8.2 Large-sample confidence intervals for a population mean
- Using the Central Limit Theorem to derive Cls
8.3 Intervals based on normal distribution
- Using Student's t-distribution
8.4 Cls for standard deviation
- Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution $f(x, \theta)$
- In Chapter 7, we learnt methods to construct an estimate $\hat{\theta}$ of θ
- Goal: we want to indicate the degree of uncertainty associated with this random prediction
- One way to do so is to construct a confidence interval $[\hat{\theta}-a, \hat{\theta}+b]$ such that

$$
P[\theta \in[\hat{\theta}-a, \hat{\theta}+b]]=95 \%
$$

Principles for deriving Cls

If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a distribution $f(x, \theta)$, then

- Find a random variable $Y=h\left(X_{1}, X_{2}, \ldots, X_{n} ; \theta\right)$ such that the probability distribution of Y does not depend on θ or on any other unknown parameters.
- Find constants a, b such that

$$
P\left[a<h\left(X_{1}, X_{2}, \ldots, X_{n} ; \theta\right)<b\right]=0.95
$$

- Manipulate these inequalities to isolate θ

$$
P\left[\ell\left(X_{1}, X_{2}, \ldots, X_{n}\right)<\theta<u\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right]=0.95
$$

Confidence interval: example

Problem

Suppose the sediment density $(\mathrm{g} / \mathrm{cm})$ of a randomly selected specimen from a certain region is normally distributed with mean μ and standard deviation 0.85 .
If a random sample of 25 specimens is selected, with sample average \bar{X}.

- Find a number a such that

$$
P[-a<\bar{X}-\mu<a]=0.95
$$

Confidence intervals for a population mean

- Assumptions:
- Normal distribution
- σ is known
- 95% confidence interval

If after observing $X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}$, we compute the observed sample mean \bar{x}. Then

$$
\left(\bar{x}-1.96 \frac{\sigma}{\sqrt{n}}, \bar{x}+1.96 \frac{\sigma}{\sqrt{n}}\right)
$$

is a 95% confidence interval of μ

Assumptions

- Section 8.1
- Normal distribution
- σ is known
- Section 8.2
- Normal distribution
\rightarrow use Central Limit Theorem \rightarrow needs $n>30$
- σ is known
\rightarrow replace σ by $s \rightarrow$ needs $n>40$
- Section 8.3
- Normal distribution
- σ is known
\rightarrow Introducing t-distribution
z_{α} will denote the value on the measurement axis for which α of the area under the z curve lies to the right of z_{α}. (See Figure 4.19.)

For example, $z_{.10}$ captures upper-tail area .10 and $z_{.01}$ captures upper-tail area 01 .

Figure $4.19 z_{\alpha}$ notation illustrated
Since α of the area under the standard normal curve lies to the right of $z_{\alpha}, 1-\alpha$ of the area lies to the left of z_{α}. Thus z_{α} is the $100(1-\alpha)$ th percentile of the standard normal distribution. By symmetry the area under the standard normal curve to the left of $-z_{\alpha}$ is also α. The z_{α} 's are usually referred to as z critical values. Table 4.1 lists the most useful standard normal percentiles and z_{α} values.

$100(1-\alpha) \%$ confidence interval

Figure 8.4 $P\left(-z_{\alpha / 2} \leq Z \leq z_{\alpha / 2}\right)=1-\alpha$

$100(1-\alpha) \%$ confidence interval

A $100(1-\alpha) \%$ confidence interval for the mean μ of a normal population when the value of σ is known is given by

$$
\begin{equation*}
\left(\bar{x}-z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}\right) \tag{8.5}
\end{equation*}
$$

or, equivalently, by $\bar{x} \pm z_{\alpha / 2} \cdot \sigma / \sqrt{n}$.

z			.00	.01	.02	.03	.04	.05	.06	.07
.08	.09									
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9278	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.999	.9991	.9991	.991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997

MATH 450: Mathematical statistics

Interpreting confidence intervals

95\% confidence interval: If we repeat the experiment many times, the interval contains μ about 95% of the time

Interpreting confidence intervals

- Writing

$$
P[\mu \in(\bar{X}-1.7, \bar{X}+1.7)]=95 \%
$$

is okay.

- If $\bar{x}=2.7$, writing

$$
P[\mu \in(1,4.4)]=95 \%
$$

is NOT okay.

- Saying $\mu \in(1,4.4)$ with confidence level 95% is okay.
- Saying "if we repeat the experiment many times, the interval contains μ about 95% of the time" is perfect.

Example 1

Example

Assume that the helium porosity (in percentage) of coal samples taken from any particular seam is normally distributed with true standard deviation $\sigma=.75$.

- Compute a $95 \% \mathrm{Cl}$ for the true average porosity of a certain seam if the average porosity for 20 specimens from the seam was 4.85 .
- How large a sample size is necessary if the width of the 95% interval is to be .40 ?

Review: sample variance

Measures of Variability: deviations from the mean

Given a data set $x_{1}, x_{2}, \ldots, x_{n}$:

The sample variance, denoted by s^{2}, is given by

$$
s^{2}=\frac{\sum\left(x_{i}-\bar{x}\right)^{2}}{n-1}=\frac{S_{x x}}{n-1}
$$

The sample standard deviation, denoted by s, is the (positive) square root of the variance:

$$
s=\sqrt{s^{2}}
$$

Computing formula for s^{2}

$$
S_{x x}=\sum\left(x_{i}-\bar{x}\right)^{2}=\sum x_{i}^{2}-\frac{\left(\sum x_{i}\right)^{2}}{n}
$$

Proof Because $\bar{x}=\sum x_{i} / n, n \bar{x}^{2}=\left(\sum x_{i}\right)^{2} / n$. Then,

$$
\begin{aligned}
\sum\left(x_{i}-\bar{x}\right)^{2} & =\sum\left(x_{i}^{2}-2 \bar{x} \cdot x_{i}+\bar{x}^{2}\right)=\sum x_{i}^{2}-2 \bar{x} \sum x_{i}+\sum(\bar{x})^{2} \\
& =\sum x_{i}^{2}-2 \bar{x} \cdot n \bar{x}+n(\bar{x})^{2}=\sum x_{i}^{2}-n(\bar{x})^{2}
\end{aligned}
$$

8.2: Large-sample Cls of the population mean

Principles

- Central Limit Theorem

$$
\frac{\bar{x}-\mu}{\sigma / \sqrt{n}}
$$

is approximately normal when $n>30$

- Moreover, when n is sufficiently large $s \approx \sigma$
- Conclusion:

$$
\frac{\bar{X}-\mu}{s / \sqrt{n}}
$$

is approximately normal when n is sufficiently large
If $n>40$, we can ignore the normal assumption and replace σ by s

95\% confidence interval

If after observing $X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}(n>40)$, we compute the observed sample mean \bar{x} and sample standard deviation s. Then

$$
\left(\bar{x}-1.96 \frac{s}{\sqrt{n}}, \bar{x}+1.96 \frac{s}{\sqrt{n}}\right)
$$

is a 95% confidence interval of μ

$100(1-\alpha) \%$ confidence interval

If after observing $X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}(n>40)$, we compute the observed sample mean \bar{x} and sample standard deviation s. Then

$$
\left(\bar{x}-z_{\alpha / 2} \frac{s}{\sqrt{n}}, \bar{x}+z_{\alpha / 2} \frac{s}{\sqrt{n}}\right)
$$

is a 95% confidence interval of μ

One-sided Cls (Confidence bounds)

One-sided Cls

A large-sample upper confidence bound for μ is

$$
\mu<\bar{x}+z_{\alpha} \cdot \frac{s}{\sqrt{n}}
$$

and a large-sample lower confidence bound for μ is

$$
\mu>\bar{x}-z_{\alpha} \cdot \frac{s}{\sqrt{n}}
$$

Cls vs. one-sided Cls

Cls:

- 100(1- α)\% confidence

$$
\left(\bar{x}-z_{\alpha / 2} \frac{s}{\sqrt{n}}, \bar{x}+z_{\alpha / 2} \frac{s}{\sqrt{n}}\right)
$$

- 95% confidence

$$
\left(\bar{x}-1.96 \frac{s}{\sqrt{n}}, \bar{x}+1.96 \frac{s}{\sqrt{n}}\right)
$$

One-sided Cls:

- 100(1- α) \% confidence

$$
\left(-\infty, \bar{x}+z_{\alpha} \frac{s}{\sqrt{n}}\right)
$$

- 95% confidence

$$
\left(-\infty, \bar{x}+1.64 \frac{s}{\sqrt{n}}\right)
$$

Confidence level

Problem

Determine the confidence level for each of the following large-sample confidence intervals/bounds:
(a) $\bar{x}+0.84 s / \sqrt{n}$
(b) $(\bar{x}-0.84 s / \sqrt{n}, \bar{x}+0.84 s / \sqrt{n})$
(c) $\bar{x}-2.05 s / \sqrt{n}$

z			.00	.01	.02	.03	.04	.05	.06	.07
.08	.09									
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9278	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.999	.9991	.9991	.991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997

MATH 450: Mathematical statistics

Example 2

Example

A sample of 66 obese adults was put on a low-carbohydrate diet for a year. The average weight loss was 11 lb and the standard deviation was 19 lb . Calculate a 99% lower confidence bound for the true average weight loss

8.3: Intervals based on normal distributions

Assumptions

- the population of interest is normal (i.e., X_{1}, \ldots, X_{n} constitutes a random sample from a normal distribution $\left.\mathcal{N}\left(\mu, \sigma^{2}\right)\right)$.
- σ is unknown
\rightarrow we want to consider cases when n is small.
- When $n<40, S$ is no longer close to σ. Thus

$$
T=\frac{\bar{x}-\mu}{S / \sqrt{n}}
$$

does not follow the standard normal distribution.

- \{Section 6\} But since we know the distribution of X, technically we can compute the distribution of T
- Moreover, the distribution of T does not depend on μ and σ \{More reading: Section 6.4\}

t distributions with degree of freedom ν

Probability density function

$$
f(t)=\frac{\Gamma\left(\frac{\nu+1}{2}\right)}{\sqrt{\nu \pi} \Gamma\left(\frac{\nu}{2}\right)}\left(1+\frac{t^{2}}{\nu}\right)^{-\frac{\nu+1}{2}}
$$

PROPERTIES OF T DISTRIBUTIONS

1. Each t_{v} curve is bell-shaped and centered at 0 .
2. Each t_{v} curve is more spread out than the standard normal (z) curve.
3. As v increases, the spread of the t_{v} curve decreases.
4. As $v \rightarrow \infty$, the sequence of t_{v} curves approaches the standard normal curve (so the z curve is often called the t curve with $\mathrm{df}=\infty$).

t distributions

When \bar{X} is the mean of a random sample of size n from a normal distribution with mean μ, the rv

$$
\frac{\bar{x}-\mu}{S / \sqrt{n}}
$$

has the t distribution with $n-1$ degree of freedom (df).

Let $t_{\alpha, v}=$ the number on the measurement axis for which the area under the t curve with v df to the right of $t_{\alpha, v}$, is $\alpha ; t_{\alpha, v}$ is called a t critical value.

Figure 8.7 A pictorial definition of $t_{\alpha, \nu}$

How to do computation with t distributions

- Instead of looking up the normal Z-table A3, look up the two t-tables A5 and A7.
- Idea

$$
P\left[T \geq t_{\alpha, \nu}\right]=\alpha
$$

- $\{$ From t, find $\alpha\} \rightarrow$ using table A7
- $\{$ From α, find $t\} \rightarrow$ using table A5

Table A. $7 t$ Curve Tail Areas

		2		4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
0.0	. 500	. 500	. 500	. 500	. 500	. 500	. 500	. 500	. 500	. 500	. 500	. 500	. 500	. 500	. 500	. 50	. 500	. 500
0.1	. 468	. 465	. 463	. 463	. 462.	. 462	. 462	. 461	. 461	. 461	. 461	. 461	. 461	. 461	. 461	. 461	. 461	. 461
0.2	. 437	. 430	. 427	. 426	. 425	. 424	. 424	. 423	. 423	. 423	. 423	. 422	. 42	. 422	. 422	. 42	. 422	422
0.3	. 40	. 396	. 392	. 390	. 388	. 387	. 386	. 386	. 386	. 385	. 385	. 385	. 38	. 384	. 384	. 38	. 384	. 384
0.4	. 379	. 364	. 358	. 355	. 353	. 352	. 351	. 350	. 349	. 349	. 348	. 348	. 348	. 347	. 347	. 347	. 347	. 347
0.5	. 352	. 333	. 326	. 322	. 319	. 317	. 316	. 315	. 315	. 314	. 313	. 313	. 313	. 312	. 312	. 312	. 312	312
	. 328	. 30	. 295	. 290	. 287	. 285	284	. 283	. 282	. 28	. 280	. 280	. 27	279	27	. 27	278	278
0.7	. 306	. 278	. 267	. 261	. 258	. 255	. 253	. 252	. 251	. 250	. 249	. 249	. 248	. 247	. 247	. 24	. 247	. 246
0.8	. 285	. 254	. 241	. 234	. 230	. 227	. 225	. 223	. 222	. 22	. 220	. 220	. 21	. 218	. 218	. 21	. 217	217
	. 267	. 232	. 217	. 210	. 205	. 201	. 199	. 197	. 196	. 195	. 194	. 193	. 192	. 191	. 191	. 191	. 190	. 190
1.0	. 250	. 211	. 196	. 187	. 182	. 178	. 175	. 173	. 172	. 170	. 169	. 169	. 168	. 167	. 167	. 16	. 166	. 165
	. 23	. 193	. 176	. 167	. 162	. 157	. 154	. 152	. 150	. 149	47	. 146	. 146	. 144	. 144	. 144	3	143
	. 221	. 177	. 158	. 148	. 142	. 138	. 135	. 132	. 130	. 129	. 128	. 127	. 126	. 124	. 124	. 12	. 123	123
1.3	. 209	. 162	. 142	. 132	. 125	. 121	. 117	. 115	. 113	. 111	. 110	. 109	. 10	. 107	. 107	. 10	. 105	. 10
1.4	. 197	. 148	. 128	. 117	. 110	. 106	. 102	. 100	. 098	. 096	. 095	. 093	. 092	. 091	. 091	. 090	. 090	. 089
1.5	. 187	. 136	. 115	. 104	. 097	. 092	. 089	. 086	. 084	. 082	. 081	. 080	. 079	. 077	. 077	. 07	. 076	. 075
	. 178	. 125	. 104	. 092	. 085	. 080	. 077	. 074	. 072	. 070	. 069	. 068	. 067	. 065	. 065	. 065	. 064	064
	. 169	. 116	. 094	. 082	. 075	. 070	. 065	. 064	. 062	. 060	. 059	. 057	. 056	. 055	. 055	. 054	. 054	. 53
	. 161	. 107	. 085	. 073	. 066	. 061	. 057	. 055	. 053	. 051	. 050	. 049	. 048	. 046	. 046	. 045	. 045	. 044
1.9	. 154	. 099	. 077	. 065	. 058	. 053	. 050	. 047	. 045	. 043	. 042	. 041	. 040	. 038	. 038	. 038	. 037	. 03

MATH 450: Mathematical statistics

Table A. 5 Critical Values for t Distributions

$\boldsymbol{\alpha}$							
$\boldsymbol{\nu}$	$\mathbf{. 1 0}$	$\mathbf{. 0 5}$	$\mathbf{. 0 2 5}$	$\boldsymbol{. 0 1}$	$\mathbf{. 0 0 5}$	$\mathbf{. 0 0 1}$	$\mathbf{. 0 0 0 5}$
$\mathbf{1}$	3.078	6.314	12.706	31.821	63.657	318.31	636.62
2	1.886	2.920	4.303	6.965	9.925	22.326	31.598
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965

MATH 450: Mathematical statistics

Confidence intervals

Let \bar{x} and s be the sample mean and sample standard deviation computed from the results of a random sample from a normal population with mean μ. Then a $\mathbf{1 0 0}(1-\alpha) \%$ confidence interval for $\boldsymbol{\mu}$, the one-sample \boldsymbol{t} CI, is

$$
\begin{equation*}
\left(\bar{x}-t_{\alpha / 2, n-1} \cdot \frac{s}{\sqrt{n}}, \bar{x}+t_{\alpha / 2, n-1} \cdot \frac{s}{\sqrt{n}}\right) \tag{8.15}
\end{equation*}
$$

or, more compactly, $\bar{x} \pm t_{\alpha / 2, n-1} \cdot s / \sqrt{n}$.
An upper confidence bound for $\boldsymbol{\mu}$ is

$$
\bar{x}+t_{\alpha, n-1} \cdot \frac{s}{\sqrt{n}}
$$

and replacing + by - in this latter expression gives a lower confidence bound for $\boldsymbol{\mu}$; both have confidence level $100(1-\alpha) \%$.

Example 3

Example

Here is a sample of ACT scores for students taking college freshman calculus:

24.00	28.00	27.75	27.00	24.25	23.50	26.25
24.00	25.00	30.00	23.25	26.25	21.50	26.00
28.00	24.50	22.50	28.25	21.25	19.75	

Assume that ACT scores are normally distributed, calculate a two-sided 95% confidence inter-val for the population mean.

Table A. 5 Critical Values for t Distributions

$\boldsymbol{\alpha}$							
$\boldsymbol{\nu}$	$\mathbf{. 1 0}$	$\mathbf{. 0 5}$	$\mathbf{. 0 2 5}$	$\boldsymbol{. 0 1}$	$\mathbf{. 0 0 5}$	$\mathbf{. 0 0 1}$	$\mathbf{. 0 0 0 5}$
$\mathbf{1}$	3.078	6.314	12.706	31.821	63.657	318.31	636.62
2	1.886	2.920	4.303	6.965	9.925	22.326	31.598
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965

MATH 450: Mathematical statistics

