MATH 450: Mathematical statistics

Oct 22nd, 2019

Lecture 17: Midterm review

MATH 450: Mathematical statistics

• Midterm exam:

Thursday, 10/24/2019, 9:30 am -10:45 am

- Closed-book. Books/notes/computers are not allowed
- Calculators allowed
- One-sided hand-written A4-size note
- z and t tables are provided

Week 2 · · · · •	Chapter 6: Statistics and Sampling Distributions				
Week 4 · · · · ·	Chapter 7: Point Estimation				
Week 7 · · · · ·	Chapter 8: Confidence Intervals				
Week 10	Chapter 9: Test of Hypothesis				
Week 11	Chapter 10: Two-sample inference				
Week 13 · · · · •	Regression				

ヘロト ヘ団ト ヘヨト ヘヨト

æ

- 6.1 Statistics and their distributions
- 6.2 The distribution of the sample mean
- 6.3 The distribution of a linear combination

Given a random sample X_1, X_2, \ldots, X_n , and

$$T = a_1 X_1 + a_2 X_2 + \ldots + a_n X_n$$

- If we know the distribution of X_i's, can we obtain the distribution of T?
 - Simple cases
 - If $X'_i s$ follow normal distribution, then so does T.
- If we don't know the distribution of X_i's, can we still obtain/approximate the distribution of T?
 - Can we at least compute the mean and the variance?
 - When T is the sample mean, i.e. $a_1 = a_2 = \ldots = \frac{1}{n}$

Problem

Consider the distribution P

Let $\{X_1, X_2\}$ be a random sample of size 2 from P, and $T = X_1 + X_2$.

- Compute P[T = 40]
- Our Derive the probability mass function of T
- **③** Compute the expected value and the standard deviation of T

Problem

Let $\{X_1, X_2\}$ be a random sample of size 2 from the exponential distribution with parameter λ

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$

and $T = X_1 + X_2$. What is the distribution of T?

→ < Ξ → <</p>

Theorem

Let $X_1, X_2, ..., X_n$ be independent random variables (with possibly different means and/or variances). Define

$$T = a_1 X_1 + a_2 X_2 + \ldots + a_n X_n$$

then the mean and the standard deviation of T can be computed by

•
$$E(T) = a_1 E(X_1) + a_2 E(X_2) + \dots + a_n E(X_n)$$

•
$$\sigma_T^2 = a_1^2 \sigma_{X_1}^2 + a_2^2 \sigma_{X_2}^2 + \ldots + a_n^2 \sigma_{X_n}^2$$

Let $X_1, X_2, ..., X_n$ be a random sample from a distribution with mean value μ and standard deviation σ . Then

1. $E(\overline{X}) = \mu_{\overline{X}} = \mu$ **2.** $V(\overline{X}) = \sigma_{\overline{X}}^2 = \sigma^2/n$ and $\sigma_{\overline{X}} = \sigma/\sqrt{n}$

• • = • • = •

Theorem

Let X_1, X_2, \ldots, X_n be a random sample from a distribution with mean μ and variance σ^2 . Then, in the limit when $n \to \infty$, the standardized version of \overline{X} have the standard normal distribution

$$\lim_{n\to\infty} \mathbb{P}\left(\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \leq z\right) = \mathbb{P}[Z \leq z] = \Phi(z)$$

Rule of Thumb:

If n > 30, the Central Limit Theorem can be used for computation.

Problem

The tip percentage at a restaurant has a mean value of 18% and a standard deviation of 6%.

What is the approximate probability that the sample mean tip percentage for a random sample of 40 bills is between 16% and 19%?

- 7.1 Point estimate
 - unbiased estimator
 - mean squared error
- 7.2 Methods of point estimation
 - method of moments
 - method of maximum likelihood.

Definition

The mean squared error of an estimator $\hat{\theta}$ is

$$E[(\hat{\theta}-\theta)^2]$$

Theorem

$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2] = V(\hat{\theta}) + (E(\hat{\theta}) - \theta)^2$$

Bias-variance decomposition

Mean squared error = variance of estimator + $(bias)^2$

Definition

A point estimator $\hat{\theta}$ is said to be an unbiased estimator of θ if

$$E(\hat{\theta}) = \theta$$

for every possible value of θ .

Unbiased estimator \Leftrightarrow Bias = 0 \Leftrightarrow Mean squared error = variance of estimator • Let X_1, \ldots, X_n be a random sample from a distribution with pmf or pdf

$$f(x; \theta_1, \theta_2, \ldots, \theta_m)$$

• Assume that for $k = 1, \ldots, m$

$$\hat{u}_k = \frac{X_1^k + X_2^k + \ldots + X_n^k}{n} = E(X^k)$$

• Solve the system of equations for $\theta_1, \theta_2, \ldots, \theta_m$

Maximum likelihood estimator

• Let $X_1, X_2, ..., X_n$ have joint pmf or pdf

$$f_{joint}(x_1, x_2, \ldots, x_n; \theta)$$

where θ is unknown.

- When x₁,..., x_n are the observed sample values and this expression is regarded as a function of θ, it is called the likelihood function.
- The maximum likelihood estimates θ_{ML} are the value for θ that maximize the likelihood function:

$$f_{joint}(x_1, x_2, \dots, x_n; \theta_{ML}) \ge f_{joint}(x_1, x_2, \dots, x_n; \theta) \quad \forall \theta$$

- Step 1: Write down the likelihood function.
- Step 2: Try taking the logarithm of this function.
- Step 3: Find the maximum of this new function.
 - $\bullet\,$ compute the derivative of the function with respect to $\theta\,$
 - set this expression of the derivative to 0
 - solve the equation

- 8.1 Basic properties of confidence intervals (CIs)
 - Interpreting CIs
 - General principles to derive CI
- 8.2 Large-sample confidence intervals for a population mean
 - Using the Central Limit Theorem to derive CIs
- 8.3 Intervals based on normal distribution
 - Using Student's t-distribution

- Let $X_1, X_2, ..., X_n$ be a random sample from a distribution $f(x, \theta)$
- In Chapter 7, we learnt methods to construct an estimate $\hat{\theta}$ of θ
- Goal: we want to indicate the degree of uncertainty associated with this random prediction
- One way to do so is to construct a *confidence interval* $[\hat{\theta} a, \hat{\theta} + b]$ such that

$$P[heta \in [\hat{ heta} - a, \hat{ heta} + b]] = 95\%$$

If X_1, X_2, \ldots, X_n is a random sample from a distribution $f(x, \theta)$, then

- Find a random variable $Y = h(X_1, X_2, ..., X_n; \theta)$ such that the probability distribution of Y does not depend on θ or on any other unknown parameters.
- Find constants *a*, *b* such that

$$P[a < h(X_1, X_2, \dots, X_n; \theta) < b] = 0.95$$

• Manipulate these inequalities to isolate θ

$$P[\ell(X_1, X_2, \dots, X_n) < \theta < u(X_1, X_2, \dots, X_n)] = 0.95$$

Confidence intervals for a population mean

- \bullet Section 8.1: Normal distribution with known σ
 - Normal distribution
 - σ is known
- Section 8.2: Large-sample confidence intervals
 - Normal distribution
 - ightarrow use Central Limit Theorem ightarrow needs n>30
 - σ is known
 - \rightarrow replace σ by $s \rightarrow$ needs n > 40
- Section 8.3: Intervals based on normal distributions
 - Normal distribution
 - σ is known
 - \rightarrow Introducing *t*-distribution

z-critical value

NOTATION z_{α} will denote the value on the measurement axis for which α of the area under the *z* curve lies to the right of z_{α} . (See Figure 4.19.)

For example, $z_{.10}$ captures upper-tail area .10 and $z_{.01}$ captures upper-tail area .01.

Figure 4.19 z_{α} notation illustrated

Since α of the area under the standard normal curve lies to the right of z_{α} , $1 - \alpha$ of the area lies to the left of z_{α} . Thus z_{α} is the $100(1 - \alpha)$ th percentile of the standard normal distribution. By symmetry the area under the standard normal curve to the left of $-z_{\alpha}$ is also α . The z_{α} 's are usually referred to as z critical values. Table 4.1 lists the most useful standard normal percentiles and z_{α} values.

< ロ > < 同 > < 三 > < 三 >

t distributions

Let $t_{\alpha,\nu}$ = the number on the measurement axis for which the area under the *t* curve with *v* df to the right of $t_{\alpha,\nu}$, is α ; $t_{\alpha,\nu}$ is called a *t* critical value.

Figure 8.7 A pictorial definition of $t_{\alpha,\nu}$

A 100(1 – α)% confidence interval for the mean μ of a normal population when the value of σ is known is given by

$$\left(\bar{x} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right)$$
(8.5)

or, equivalently, by $\overline{x} \pm z_{\alpha/2} \cdot \sigma / \sqrt{n}$.

• • = • • = •

If after observing $X_1 = x_1$, $X_2 = x_2$,..., $X_n = x_n$ (n > 40), we compute the observed sample mean \bar{x} and sample standard deviation s. Then

$$\left(\bar{x}-z_{\alpha/2}\frac{s}{\sqrt{n}},\bar{x}+z_{\alpha/2}\frac{s}{\sqrt{n}}\right)$$

is a 95% confidence interval of μ

A large-sample upper confidence bound for μ is

$$\mu < \bar{x} + z_{\alpha} \cdot \frac{s}{\sqrt{n}}$$

and a large-sample lower confidence bound for μ is

$$\mu > \bar{x} - z_{\alpha} \cdot \frac{s}{\sqrt{n}}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Let \bar{x} and s be the sample mean and sample standard deviation computed from the results of a random sample from a normal population with mean μ . Then a 100(1 - α)% confidence interval for μ , the one-sample t CI, is

$$\left(\overline{x} - t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}}, \overline{x} + t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}}\right)$$
(8.15)

or, more compactly, $\overline{x} \pm t_{\alpha/2,n-1} \cdot s/\sqrt{n}$. An upper confidence bound for μ is

$$\overline{x} + t_{\alpha,n-1} \cdot \frac{s}{\sqrt{n}}$$

and replacing + by – in this latter expression gives a lower confidence bound for μ ; both have confidence level $100(1 - \alpha)\%$.

< ロ > < 同 > < 回 > < 回 > < □ > <

A prediction interval (PI) for a single observation to be selected from a normal population distribution is

$$\overline{x} \pm t_{\alpha/2, n-1} \cdot s \sqrt{1 + \frac{1}{n}} \tag{8.16}$$

The prediction level is $100(1 - \alpha)\%$.

< 同 > < 国 > < 国 >

Problem

Here are the alcohol percentages for a sample of 16 beers:

4.68	4.13	4.80	4.63	5.08	5.79	6.29	6.79
4.93	4.25	5.70	4.74	5.88	6.77	6.04	4.95

- (a) Assume the distribution is normal, construct the 95% confidence interval for the population mean.
- (b) Assume the distribution is normal, construct the 95% lower confidence bound for the population mean.
- (c) Assume that another beer is sampled from the same distribution, construct the 95% prediction interval for the alcohol percentages of that beer.

Problem

Suppose that against a certain opponent, the number of points a basketball team scores is normally distributed with unknown mean μ and unknown variance σ^2 . Suppose that over the course of the last 10 games, the team scored the following points:

59, 62, 59, 74, 70, 61, 62, 66, 62, 75

- Construct a 95% confidence interval for μ .
- Now suppose that you learn that σ² = 25. Construct a 95% confidence interval for μ.

Interpreting confidence intervals

95% confidence interval: If we repeat the experiment many times, the interval contains μ about 95% of the time