MATH 450: Mathematical statistics

Oct 22nd, 2019

Lecture 17: Midterm review

Att.

- Midterm exam:

Thursday, 10/24/2019, 9:30 am -10:45 am

- Closed-book. Books/notes/computers are not allowed
- Calculators allowed
- One-sided hand-written A4-size note
- z and t tables are provided

Midterm

| Week $2 \ldots \ldots$ | Chapter 6: Statistics and Sampling
 Distributions |
| :--- | :--- | :--- |
| Week $4 \ldots \ldots$ | Chapter 7: Point Estimation |
| Week $7 \ldots \ldots$ | Chapter 8: Confidence Intervals |
| Week $10 \ldots \ldots$ | Chapter 9: Test of Hypothesis |
| Week $11 \ldots \ldots$ | Chapter 10: Two-sample inference |
| Week $13 \ldots \ldots$ | Regression |

Chapter 6: Overview

6.1 Statistics and their distributions
6.2 The distribution of the sample mean
6.3 The distribution of a linear combination

Questions for Chapter 6

Given a random sample $X_{1}, X_{2}, \ldots, X_{n}$, and

$$
T=a_{1} X_{1}+a_{2} X_{2}+\ldots+a_{n} X_{n}
$$

- If we know the distribution of X_{i} 's, can we obtain the distribution of T ?
- Simple cases
- If $X_{i}^{\prime} s$ follow normal distribution, then so does T.
- If we don't know the distribution of X_{i} 's, can we still obtain/approximate the distribution of T ?
- Can we at least compute the mean and the variance?
- When T is the sample mean, i.e. $a_{1}=a_{2}=\ldots=\frac{1}{n}$

Example 1

Problem

Consider the distribution P

x	10	15	20
$p(x)$	0.2	0.3	0.5

Let $\left\{X_{1}, X_{2}\right\}$ be a random sample of size 2 from P, and $T=X_{1}+X_{2}$.
(1) Compute $P[T=40]$
(2) Derive the probability mass function of T
(3) Compute the expected value and the standard deviation of T

Example 2

Problem

Let $\left\{X_{1}, X_{2}\right\}$ be a random sample of size 2 from the exponential distribution with parameter λ

$$
f(x)= \begin{cases}\lambda e^{-\lambda x} & \text { if } x \geq 0 \\ 0 & \text { if } x<0\end{cases}
$$

and $T=X_{1}+X_{2}$.
What is the distribution of T ?

Linear combination of random variables

Theorem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables (with possibly different means and/or variances). Define

$$
T=a_{1} X_{1}+a_{2} X_{2}+\ldots+a_{n} X_{n}
$$

then the mean and the standard deviation of T can be computed by

- $E(T)=a_{1} E\left(X_{1}\right)+a_{2} E\left(X_{2}\right)+\ldots+a_{n} E\left(X_{n}\right)$
- $\sigma_{T}^{2}=a_{1}^{2} \sigma_{X_{1}}^{2}+a_{2}^{2} \sigma_{X_{2}}^{2}+\ldots+a_{n}^{2} \sigma_{X_{n}}^{2}$

Mean and variance of the sample mean

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution with mean value μ and standard deviation σ. Then

1. $E(\bar{X})=\mu_{\bar{X}}=\mu$
2. $V(\bar{X})=\sigma_{\bar{X}}^{2}=\sigma^{2} / n$ and $\sigma_{\bar{X}}=\sigma / \sqrt{n}$

Theorem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution with mean μ and variance σ^{2}. Then, in the limit when $n \rightarrow \infty$, the standardized version of \bar{X} have the standard normal distribution

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \leq z\right)=\mathbb{P}[Z \leq z]=\Phi(z)
$$

Rule of Thumb:
If $n>30$, the Central Limit Theorem can be used for computation.

Example

Problem

The tip percentage at a restaurant has a mean value of 18% and a standard deviation of 6\%.

What is the approximate probability that the sample mean tip percentage for a random sample of 40 bills is between 16% and 19\%?

Chapter 7: Overview

7.1 Point estimate

- unbiased estimator
- mean squared error
7.2 Methods of point estimation
- method of moments
- method of maximum likelihood.

Bias-variance decomposition

Definition

The mean squared error of an estimator $\hat{\theta}$ is

$$
E\left[(\hat{\theta}-\theta)^{2}\right]
$$

Theorem

$$
\operatorname{MSE}(\hat{\theta})=E\left[(\hat{\theta}-\theta)^{2}\right]=V(\hat{\theta})+(E(\hat{\theta})-\theta)^{2}
$$

Bias-variance decomposition
Mean squared error $=$ variance of estimator $+(\text { bias })^{2}$

Unbiased estimators

Definition

A point estimator $\hat{\theta}$ is said to be an unbiased estimator of θ if

$$
E(\hat{\theta})=\theta
$$

for every possible value of θ.

Unbiased estimator
\Leftrightarrow Bias $=0$
\Leftrightarrow Mean squared error $=$ variance of estimator

- Let X_{1}, \ldots, X_{n} be a random sample from a distribution with pmf or pdf

$$
f\left(x ; \theta_{1}, \theta_{2}, \ldots, \theta_{m}\right)
$$

- Assume that for $k=1, \ldots, m$

$$
\hat{u}_{k}=\frac{X_{1}^{k}+X_{2}^{k}+\ldots+X_{n}^{k}}{n}=E\left(X^{k}\right)
$$

- Solve the system of equations for $\theta_{1}, \theta_{2}, \ldots, \theta_{m}$

Maximum likelihood estimator

- Let $X_{1}, X_{2}, \ldots, X_{n}$ have joint pmf or pdf

$$
f_{\text {joint }}\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)
$$

where θ is unknown.

- When x_{1}, \ldots, x_{n} are the observed sample values and this expression is regarded as a function of θ, it is called the likelihood function.
- The maximum likelihood estimates $\theta_{M L}$ are the value for θ that maximize the likelihood function:

$$
f_{\text {joint }}\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta_{M L}\right) \geq f_{\text {joint }}\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)
$$

How to find the MLE?

- Step 1: Write down the likelihood function.
- Step 2: Try taking the logarithm of this function.
- Step 3: Find the maximum of this new function.
- compute the derivative of the function with respect to θ
- set this expression of the derivative to 0
- solve the equation

Chapter 8: Overview

8.1 Basic properties of confidence intervals (Cls)

- Interpreting Cls
- General principles to derive Cl
8.2 Large-sample confidence intervals for a population mean
- Using the Central Limit Theorem to derive Cls
8.3 Intervals based on normal distribution
- Using Student's t-distribution
- Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution $f(x, \theta)$
- In Chapter 7, we learnt methods to construct an estimate $\hat{\theta}$ of θ
- Goal: we want to indicate the degree of uncertainty associated with this random prediction
- One way to do so is to construct a confidence interval $[\hat{\theta}-a, \hat{\theta}+b]$ such that

$$
P[\theta \in[\hat{\theta}-a, \hat{\theta}+b]]=95 \%
$$

Principles for deriving Cls

If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a distribution $f(x, \theta)$, then

- Find a random variable $Y=h\left(X_{1}, X_{2}, \ldots, X_{n} ; \theta\right)$ such that the probability distribution of Y does not depend on θ or on any other unknown parameters.
- Find constants a, b such that

$$
P\left[a<h\left(X_{1}, X_{2}, \ldots, X_{n} ; \theta\right)<b\right]=0.95
$$

- Manipulate these inequalities to isolate θ

$$
P\left[\ell\left(X_{1}, X_{2}, \ldots, X_{n}\right)<\theta<u\left(X_{1}, X_{2}, \ldots, X_{n}\right)\right]=0.95
$$

Confidence intervals for a population mean

- Section 8.1: Normal distribution with known σ
- Normal distribution
- σ is known
- Section 8.2: Large-sample confidence intervals
- Normal distribution
\rightarrow use Central Limit Theorem \rightarrow needs $n>30$
- σ is known
\rightarrow replace σ by $s \rightarrow$ needs $n>40$
- Section 8.3: Intervals based on normal distributions
- Normal distribution
- σ is known
\rightarrow Introducing t-distribution
z_{α} will denote the value on the measurement axis for which α of the area under the z curve lies to the right of z_{α}. (See Figure 4.19.)

For example, $z_{.10}$ captures upper-tail area .10 and $z_{.01}$ captures upper-tail area 01 .

Figure $4.19 z_{\alpha}$ notation illustrated
Since α of the area under the standard normal curve lies to the right of $z_{\alpha}, 1-\alpha$ of the area lies to the left of z_{α}. Thus z_{α} is the $100(1-\alpha)$ th percentile of the standard normal distribution. By symmetry the area under the standard normal curve to the left of $-z_{\alpha}$ is also α. The z_{α} 's are usually referred to as z critical values. Table 4.1 lists the most useful standard normal percentiles and z_{α} values.

Let $t_{\alpha, v}=$ the number on the measurement axis for which the area under the t curve with v df to the right of $t_{\alpha, v}$, is $\alpha ; t_{\alpha, v}$ is called a t critical value.

Figure 8.7 A pictorial definition of $t_{\alpha, \nu}$

Section 8.1

A $100(1-\alpha) \%$ confidence interval for the mean μ of a normal population when the value of σ is known is given by

$$
\begin{equation*}
\left(\bar{x}-z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}, \bar{x}+z_{\alpha / 2} \cdot \frac{\sigma}{\sqrt{n}}\right) \tag{8.5}
\end{equation*}
$$

or, equivalently, by $\bar{x} \pm z_{\alpha / 2} \cdot \sigma / \sqrt{n}$.

Section 8.2

If after observing $X_{1}=x_{1}, X_{2}=x_{2}, \ldots, X_{n}=x_{n}(n>40)$, we compute the observed sample mean \bar{x} and sample standard deviation s. Then

$$
\left(\bar{x}-z_{\alpha / 2} \frac{s}{\sqrt{n}}, \bar{x}+z_{\alpha / 2} \frac{s}{\sqrt{n}}\right)
$$

is a 95% confidence interval of μ

One-sided Cls

A large-sample upper confidence bound for μ is

$$
\mu<\bar{x}+z_{\alpha} \cdot \frac{s}{\sqrt{n}}
$$

and a large-sample lower confidence bound for μ is

$$
\mu>\bar{x}-z_{\alpha} \cdot \frac{s}{\sqrt{n}}
$$

Let \bar{x} and s be the sample mean and sample standard deviation computed from the results of a random sample from a normal population with mean μ. Then a $\mathbf{1 0 0}(1-\alpha) \%$ confidence interval for $\boldsymbol{\mu}$, the one-sample \boldsymbol{t} CI, is

$$
\begin{equation*}
\left(\bar{x}-t_{\alpha / 2, n-1} \cdot \frac{s}{\sqrt{n}}, \bar{x}+t_{\alpha / 2, n-1} \cdot \frac{s}{\sqrt{n}}\right) \tag{8.15}
\end{equation*}
$$

or, more compactly, $\bar{x} \pm t_{\alpha / 2, n-1} \cdot s / \sqrt{n}$.
An upper confidence bound for $\boldsymbol{\mu}$ is

$$
\bar{x}+t_{\alpha, n-1} \cdot \frac{s}{\sqrt{n}}
$$

and replacing + by - in this latter expression gives a lower confidence bound for $\boldsymbol{\mu}$; both have confidence level $100(1-\alpha) \%$.

Prediction intervals

A prediction interval (PI) for a single observation to be selected from a normal population distribution is

$$
\begin{equation*}
\bar{x} \pm t_{\alpha / 2, n-1} \cdot s \sqrt{1+\frac{1}{n}} \tag{8.16}
\end{equation*}
$$

The prediction level is $100(1-\alpha) \%$.

Example

Problem

Here are the alcohol percentages for a sample of 16 beers:

4.68	4.13	4.80	4.63	5.08	5.79	6.29	6.79
4.93	4.25	5.70	4.74	5.88	6.77	6.04	4.95

(a) Assume the distribution is normal, construct the 95% confidence interval for the population mean.
(b) Assume the distribution is normal, construct the 95\% lower confidence bound for the population mean.
(c) Assume that another beer is sampled from the same distribution, construct the 95% prediction interval for the alcohol percentages of that beer.

Example

Problem

Suppose that against a certain opponent, the number of points a basketball team scores is normally distributed with unknown mean μ and unknown variance σ^{2}. Suppose that over the course of the last 10 games, the team scored the following points:

$$
59,62,59,74,70,61,62,66,62,75
$$

- Construct a 95\% confidence interval for μ.
- Now suppose that you learn that $\sigma^{2}=25$. Construct a 95% confidence interval for μ.

Interpreting confidence intervals

95\% confidence interval: If we repeat the experiment many times, the interval contains μ about 95% of the time

