MATH 450: Mathematical statistics

November 5th, 2019
Lecture 20: P -values

Overview

Week 2	Chapter 6: Statistics and Sampling Distributions
Week 4	Chapter 7: Point Estimation
Week 7	Chapter 8: Confidence Intervals
Week 10	Chapter 9: Tests of Hypotheses
Week 12	Chapter 10: Two-sample testing
Week 14	Regression

Key steps in statistical inference

- Understand statistical models [Chapter 6]
- Come up with reasonable estimates of the parameters of interest [Chapter 7]
- Quantify the confidence with the estimates [Chapter 8]
- Testing with the parameters of interest [Chapter 9]

Contexts

- The central mega-example: population mean μ
- Difference between two population means

Chapter 9: Overview

9.1 Hypotheses and test procedures

- test procedures
- errors in hypothesis testing
- significance level
9.2 Tests about a population mean
- normal population with known σ
- large-sample tests
- a normal population with unknown σ
9.4 P-values

Hypothesis testing for one parameter

(1) Identify the parameter of interest
(2) Determine the null value and state the null hypothesis
(3) State the appropriate alternative hypothesis
(9) Give the formula for the test statistic
(5) State the rejection region for the selected significance level α
(0) Compute statistic value from data
((Decide whether H_{0} should be rejected and state this conclusion in the problem context

- Null hypothesis

$$
H_{0}: \mu=\mu_{0}
$$

- The alternative hypothesis will be either:
- $H_{a}: \mu>\mu_{0}$
- $H_{a}: \mu<\mu_{0}$
- $H_{a}: \mu \neq \mu_{0}$

Normal population with known σ

Null hypothesis: $\mu=\mu_{0}$
Test statistic:

$$
Z=\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}
$$

Alternative Hypothesis

$H_{\mathrm{a}}: \mu>\mu_{0}$
$H_{\mathrm{a}}: \mu<\mu_{0}$
$H_{\mathrm{a}}: \mu \neq \mu_{0}$

Rejection Region for Level α Test
$z \geq z_{\alpha}$ (upper-tailed test)
$z \leq-z_{\alpha}$ (lower-tailed test)
either $z \geq z_{\alpha / 2}$ or $z \leq-z_{\alpha / 2}$ (two-tailed test)

General rule

z curve (probability distribution of test statistic Z when H_{0} is true)

Example

Problem

A manufacturer of sprinkler systems used for fire protection in office buildings claims that the true average system-activation temperature is $130^{\circ} \mathrm{F}$. A sample of $n=9$ systems, when tested, yields a sample average activation temperature of $131.08^{\circ} \mathrm{F}$.

If the distribution of activation times is normal with standard deviation $1.5^{\circ} \mathrm{F}$, does the data contradict the manufacturer's claim at significance level $\alpha=0.01$?

- Parameter of interest: $\mu=$ true average activation temperature
- Hypotheses

$$
\begin{aligned}
& H_{0}: \mu=130 \\
& H_{a}: \mu \neq 130
\end{aligned}
$$

- Test statistic:

$$
z=\frac{\bar{x}-130}{1.5 / \sqrt{n}}
$$

- Rejection region: either $z \leq-z_{0.005}$ or $z \geq z_{0.005}=2.58$
- Substituting $\bar{x}=131.08, n=25 \rightarrow z=2.16$.
- Note that $-2.58<2.16<2.58$. We fail to reject H_{0} at significance level 0.01 .
- The data does not give strong support to the claim that the true average differs from the design value.

Large-sample tests

Large-sample tests

Null hypothesis: $\mu=\mu_{0}$
Test statistic:

$$
Z=\frac{\bar{X}-\mu_{0}}{S / \sqrt{n}}
$$

Alternative Hypothesis

$H_{\mathrm{a}}: \mu>\mu_{0}$
$H_{\mathrm{a}}: \mu<\mu_{0}$
$H_{\mathrm{a}}: \mu \neq \mu_{0}$

Rejection Region for Level α Test
$z \geq z_{\alpha}$ (upper-tailed test)
$z \leq-z_{\alpha}$ (lower-tailed test)
either $z \geq z_{\alpha / 2}$ or $z \leq-z_{\alpha / 2}$ (two-tailed test)
[Does not need the normal assumption]

Test about a normal population with unknown σ

Null hypothesis: $H_{0}: \mu=\mu_{0}$
Test statistic value: $t=\frac{\bar{x}-\mu_{0}}{s / \sqrt{n}}$
Alternative Hypothesis

Rejection Region for a Level α Test

$H_{\mathrm{a}}: \mu>\mu_{0}$
$H_{\mathrm{a}}: \mu<\mu_{0}$
$H_{\mathrm{a}}: \mu \neq \mu_{0}$

$$
\begin{aligned}
& t \geq t_{\alpha, n-1} \text { (upper-tailed) } \\
& t \leq-t_{\alpha, n-1} \text { (lower-tailed) }
\end{aligned}
$$

$$
\text { either } t \geq t_{\alpha / 2, n-1} \text { or } t \leq-t_{\alpha / 2, n-1} \text { (two-tailed) }
$$

[Require normal assumption]

Example

Problem

The amount of shaft wear (. 0001 in .) after a fixed mileage was determined for each of $n=8$ internal combustion engines having copper lead as a bearing material, resulting in $\bar{x}=3.72$ and $s=1.25$.
Assuming that the distribution of shaft wear is normal with mean μ, use the t-test at level 0.05 to test $H_{0}: \mu=3.5$ versus $H_{a}: \mu>3.5$.

Table A. 5 Critical Values for t Distributions

α

ν	.10	. 05	. 025	. 01	. 005	. 001	. 0005
1	3.078	6.314	12.706	31.821	63.657	318.31	636.62
2	1.886	2.920	4.303	6.965	9.925	22.326	31.598
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	1.319	1.714	2.069	2.500	2.807	3.485	3.767
24	1.318	1.711	2.064	2.492	2.797	3.467	3.745

MATH 450: Mathematical statistics

Practice

Problem

The standard thickness for silicon wafers used in a certain type of integrated circuit is $245 \mu \mathrm{~m}$. A sample of 50 wafers is obtained and the thickness of each one is determined, resulting in a sample mean thickness of $246.18 \mu \mathrm{~m}$ and a sample standard deviation of $3.60 \mu \mathrm{~m}$.
Does this data suggest that true average wafer thickness is larger than the target value? Carry out a test of significance at level . 05 .

Type II error and sample size determination

Hypothesis testing for one parameter

(1) Identify the parameter of interest
(2) Determine the null value and state the null hypothesis
(3) State the appropriate alternative hypothesis
(9) Give the formula for the test statistic
(5) State the rejection region for the selected significance level α
(0) Compute statistic value from data
((Decide whether H_{0} should be rejected and state this conclusion in the problem context

- A level α test is a test with P [type I error] $=\alpha$
- Question: given α and n, can we compute β (the probabilities of type II error)?
- This is a very difficult question.
- We have a solution for the cases when: the distribution is normal and σ is known

Practice problem

Problem

The drying time of a certain type of paint under specified test conditions is known to be normally distributed with standard deviation 9 min . Assuming that we are testing

$$
\begin{aligned}
& H_{0}: \mu=75 \\
& H_{a}: \mu<75
\end{aligned}
$$

from a dataset with $n=25$.

- What is the rejection region of the test with significance level $\alpha=0.05$.
- What is $\beta(70)$ in this case?
- Test of hypotheses:

$$
\begin{aligned}
& H_{0}: \mu=\mu_{0} \\
& H_{a}: \mu<\mu_{0}
\end{aligned}
$$

- Rejection region: $z \leq-z_{\alpha}$
- This is equivalent to $\bar{x} \leq \mu_{0}-z_{\alpha} \sigma / \sqrt{n}$
- Let $\mu^{\prime}<\mu_{0}$

$$
\begin{aligned}
\beta\left(\mu^{\prime}\right) & =P\left[\text { Type II error when } \mu=\mu^{\prime}\right] \\
& =P\left[H_{0} \text { is not rejected while it is false because } \mu=\mu^{\prime}\right] \\
& =P\left[\bar{X}>\mu_{0}-z_{\alpha} \sigma / \sqrt{n} \text { while } \mu=\mu^{\prime}\right] \\
& =P\left[\frac{\bar{X}-\mu^{\prime}}{\sigma / \sqrt{n}}>\frac{\mu_{0}-\mu^{\prime}}{\sigma / \sqrt{n}}-z_{\alpha} \text { while } \mu=\mu^{\prime}\right] \\
& =1-\Phi\left(\frac{\mu_{0}-\mu^{\prime}}{\sigma / \sqrt{n}}-z_{\alpha}\right)
\end{aligned}
$$

- For $\mu^{\prime}<\mu_{0}$:

$$
\beta\left(\mu^{\prime}\right)=1-\Phi\left(\frac{\mu_{0}-\mu^{\prime}}{\sigma / \sqrt{n}}-z_{\alpha}\right)
$$

- If $n, \mu^{\prime}, \mu_{0}, \sigma$ is fixed, then

$$
\begin{aligned}
& \beta\left(\mu^{\prime}\right) \text { is small } \\
& \leftrightarrow \Phi\left(\frac{\mu_{0}-\mu^{\prime}}{\sigma / \sqrt{n}}-z_{\alpha}\right) \text { is large } \\
& \leftrightarrow \frac{\mu_{0}-\mu^{\prime}}{\sigma / \sqrt{n}}-z_{\alpha} \text { is large } \\
& \leftrightarrow \alpha \text { is large }
\end{aligned}
$$

Proposition
Suppose an experiment and a sample size are fixed and a test statistic is chosen. Then decreasing the size of the rejection region to obtain a smaller value of α results in a larger value of β for any particular parameter value consistent with H_{a}.

General formulas

Alternative Hypothesis
$H_{\mathrm{a}}: \mu>\mu_{0}$ $\Phi\left(z_{\alpha}+\frac{\mu_{0}-\mu^{\prime}}{\sigma / \sqrt{n}}\right)$
$H_{\mathrm{a}}: \mu<\mu_{0}$

$$
1-\Phi\left(-z_{\alpha}+\frac{\mu_{0}-\mu^{\prime}}{\sigma / \sqrt{n}}\right)
$$

$H_{\mathrm{a}}: \mu \neq \mu_{0}$
where $\Phi(z)=$ the standard normal cdf.
The sample size n for which a level α test also has $\beta\left(\mu^{\prime}\right)=\beta$ at the alternative value μ^{\prime} is

$$
n= \begin{cases}{\left[\frac{\sigma\left(z_{\alpha}+z_{\beta}\right)}{\mu_{0}-\mu^{\prime}}\right]^{2}} & \begin{array}{l}
\text { for a one - tailed } \\
\text { (upper or lower) test }
\end{array} \\
{\left[\frac{\sigma\left(z_{\alpha / 2}+z_{\beta}\right)}{\mu_{0}-\mu^{\prime}}\right]^{2}} & \begin{array}{l}
\text { for a two - tailed test } \\
\text { (an approximate solution) }
\end{array}\end{cases}
$$

P-values

Remarks

- The common approach in statistical testing is:
(1) specifying significance level α
(2) reject/not reject H_{0} based on evidence
- Weaknesses of this approach:
- it says nothing about whether the computed value of the test statistic just barely fell into the rejection region or whether it exceeded the critical value by a large amount
- each individual may select their own significance level for their presentation
- We also want to include some objective quantity that describes how strong the rejection is $\rightarrow \mathrm{P}$-value

Practice problem

Problem

Suppose μ was the true average nicotine content of brand of cigarettes. We want to test:

$$
\begin{aligned}
& H_{0}: \mu=1.5 \\
& H_{a}: \mu>1.5
\end{aligned}
$$

Suppose that $n=64$ and $z=\frac{\bar{x}-1.5}{s / \sqrt{n}}=2.1$. Will we reject H_{0} if the significance level is
(a) $\alpha=0.05$
(b) $\alpha=0.025$
(c) $\alpha=0.01$
(d) $\alpha=0.005$

P-value

Level of Significance $\boldsymbol{\alpha}$	Rejection Region	Conclusion
.05	$z \geq 1.645$	Reject H_{0}
.025	$z \geq 1.96$	Reject H_{0}
.01	$z \geq 2.33$	Do not reect H_{0}
.005	$z \geq 2.58$	Do not reject H_{0}

Question: What is the smallest value of α for which H_{0} is rejected.

P-value

DEFINITION The \boldsymbol{P}-value (or observed significance level) is the smallest level of significance at which H_{0} would be rejected when a specified test procedure is used on a given data set. Once the P-value has been determined, the conclusion at any particular level α results from comparing the P-value to α :

1. P-value $\leq \alpha \Rightarrow$ reject H_{0} at level α.
2. P-value $>\alpha \Rightarrow$ do not reject H_{0} at level α.

DECISION
RULE BASED
ON THE
P-VALUE

Select a significance level α (as before, the desired type I error probability).
Then reject H_{0} if P-value $\leq \alpha$; do not reject H_{0} if P-value $>\alpha$

Remark: the smaller the P -value, the more evidence there is in the sample data against the null hypothesis and for the alternative hypothesis.

P-values for z-tests

Figure 9.7 Determination of the P-value for a z test

Practice problem

Problem

The target thickness for silicon wafers used in a certain type of integrated circuit is $245 \mu \mathrm{~m}$. A sample of 50 wafers is obtained and the thickness of each one is determined, resulting in a sample mean thickness of $246.18 \mu \mathrm{~m}$ and a sample standard deviation of $3.60 \mu \mathrm{~m}$.
At confidence level $\alpha=0.01$, does this data suggest that true average wafer thickness is something other than the target value?

z			.00	.01	.02	.03	.04	.05	.06	.07
.08	.09									
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9278	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.999	.9991	.9991	.991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997

MATH 450: Mathematical statistics

P-values for z-tests

1. Parameter of interest: $\mu=$ true average wafer thickness
2. Null hypothesis: $\quad H_{0}: \quad \mu=245$
3. Alternative hypothesis: $\quad H_{\mathrm{a}}: \quad \mu \neq 245$
4. Formula for test statistic value: $z=\frac{\bar{x}-245}{s / \sqrt{n}}$
5. Calculation of test statistic value: $\quad z=\frac{246.18-245}{3.60 / \sqrt{50}}=2.32$
6. Determination of P-value: Because the test is two-tailed,

$$
P \text {-value }=2[1-\Phi(2.32)]=.0204
$$

7. Conclusion: Using a significance level of $.01, H_{0}$ would not be rejected since $.0204>.01$. At this significance level, there is insufficient evidence to conclude that true average thickness differs from the target value.

P-values for z-tests

$$
P \text {-value: } \quad P= \begin{cases}1-\Phi(z) & \text { for an upper-tailed test } \\ \Phi(z) & \text { for a lower-tailed test } \\ 2[1-\Phi(|z|)] & \text { for a two-tailed test }\end{cases}
$$

P-values for t-tests

Figure 9.8 P-values for t tests

Practice problem

Problem

Suppose we want to test

$$
\begin{aligned}
& H_{0}: \mu=25 \\
& H_{a}: \mu>25
\end{aligned}
$$

from a sample with $n=5$ and the calculated value

$$
t=\frac{\bar{x}-25}{s / \sqrt{n}}=1.02
$$

(a) What is the P-value of the test
(b) Should we reject the null hypothesis?

Table A. 7 t Curve Tail Areas

						6	7	8	9	10	11	12	13	14	15	16	17	18
0.0	. 50	. 500	. 50	. 500	. 500	. 500	. 500	. 500	. 500	. 500	. 500	. 500	. 500	. 50	. 50	. 500	. 500	00
0.1	. 468	. 465	. 463	. 463	. 462.	. 462	. 462	. 461	. 461	. 461	. 461	. 461	. 461	. 461	. 461	. 46	. 461	. 461
0.2	. 437	. 430	. 427	. 426	. 425	. 424	. 424	. 423	. 423	. 423	. 423	. 422	. 422	. 422	. 422	. 422	. 422	. 422
0.3	. 407	. 396	. 39	. 390	. 388	. 38	. 386	. 38	. 386	. 385	. 38	. 385	. 384	. 38	. 38	384	. 384	. 384
0.4	. 379	. 364	. 358	. 355	. 353	. 352	. 351	. 350	. 349	. 349	. 348	. 348	. 348	. 347	. 347	. 347	. 347	. 347
0.5	. 352	. 333	. 326	. 322	. 319	. 317	. 316	. 315	. 315	. 314	. 313	. 313	. 313	. 312	. 312	. 312	. 312	. 312
	. 328	. 305	. 295	. 290	. 287	. 285	. 284	. 283	. 282	. 281	. 280	. 280	. 279	. 279	. 279	. 27	278	278
0.7	. 30	. 278	. 267	. 261	. 258	. 255	. 253	. 252	. 251	. 250	. 249	. 249	. 248	. 247	. 247	. 247	. 247	. 24
0.8	. 285	. 254	. 241	34	30	27	. 225	22	. 222	. 221	. 220	. 220	. 219	. 218	. 218	. 21	. 21	217
0.9	. 267	. 232	. 217	. 210	. 205	. 201	. 199	. 197	. 196	. 195	. 194	. 193	. 192	. 191	. 191	. 191	. 190	190
1.0	. 250	. 211	. 196	. 187	. 182	. 178	. 175	. 173	. 172	. 170	. 169	. 169	. 168	. 167	. 167	. 16	. 166	16
	. 235	. 193	. 176	. 167	. 162	. 157	. 154	. 152	. 150	. 149	. 147	. 146	. 146	. 144	. 144	. 144	. 143	. 143
1.2	. 22	. 177	. 158	. 148	. 142	. 138	. 135	. 132	. 130	. 129	. 128	. 127	. 126	. 124	. 12	. 12	. 123	23
1.3	. 209	. 162	. 142	. 132	. 125	. 121	. 117	. 115	. 113	. 111	. 110	. 109	. 108	. 107	. 107	. 106	. 105	. 105
1.4	. 197	. 148	. 128	. 117	. 110	. 106	. 102	. 100	. 098	. 096	. 095	. 093	. 092	. 091	. 091	. 090	. 090	89
1.5	187	. 136	. 11	. 10	. 097	. 092	. 089	. 086	. 08	. 082	. 081	. 080	. 079	. 077	. 077	. 07	. 076	. 075

Interpreting P-values

A P-value:

- is not the probability that H_{0} is true
- is not the probability of rejecting H_{0}
- is the probability, calculated assuming that H_{0} is true, of obtaining a test statistic value at least as contradictory to the null hypothesis as the value that actually resulted

Example 1

Let μ denote the mean reaction time to a certain stimulus. For a large-sample z test of $H_{0}: \mu=5$ versus $H_{\mathrm{a}}: \mu>5$, nd the P-value associated with each of the given values of the z test statistic.
a. 1.42
b. 90
c. 1.96
d. 2.48
e. -.11

Example 2

On the label, Pepperidge Farm bagels are said to weigh four ounces each (113 grams). A random sample of six bagels resulted in the following weights (in grams):
$\begin{array}{llllll}117.6 & 109.5 & 111.6 & 109.2 & 119.1 & 110.8\end{array}$
a. Based on this sample, is there any reason to doubt that the population mean is at least 113 grams?

