# MATH 450: Mathematical statistics

September 15th, 2020

### Lecture 5: The distribution of a linear combination

MATH 450: Mathematical statistics

- Homework due this Thursday (before lecture)
- Files to be uploaded to Canvas, or sent via Slack or email
- Screenshot of the codes and the figures are okay

| Week 2 · · · · · | Chapter 6: Statistics and Sampling Distributions |
|------------------|--------------------------------------------------|
| Week 4 · · · · · | Chapter 7: Point Estimation                      |
| Week 6 · · · · · | Chapter 8: Confidence Intervals                  |
| Week 9 · · · · • | Chapter 9: Test of Hypothesis                    |
| Week 11          | Chapter 10: Two-sample inference                 |
| Week 12          | Regression                                       |

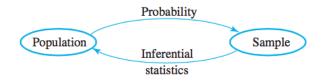
MATH 450: Mathematical statistics

▲日 ▶ ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ →

æ

- 6.1 Statistics and their distributions
- 6.2 The distribution of the sample mean
- 6.3 The distribution of a linear combination

Order  $6.1 \rightarrow 6.3 \rightarrow 6.2$ 



### Definition

The random variables  $X_1, X_2, ..., X_n$  are said to form a (simple) random sample of size n if

- the  $X_i$ 's are independent random variables
- **2** every  $X_i$  has the same probability distribution

### Definition

A statistic is any quantity whose value can be calculated from sample data

- prior to obtaining data, there is uncertainty as to what value of any particular statistic will result  $\rightarrow$  a statistic is a random variable
- the probability distribution of a statistic is referred to as its *sampling distribution*

## Example of a statistic

- Let  $X_1, X_2, \ldots, X_n$  be a random sample of size n
- The sample mean of  $X_1, X_2, \ldots, X_n$ , defined by

$$\bar{X}=\frac{X_1+X_2+\ldots X_n}{n},$$

is a statistic

• When the values of  $x_1, x_2, \ldots, x_n$  are collected,

$$\bar{x}=\frac{x_1+x_2+\ldots x_n}{n},$$

is a realization of the statistic  $ar{X}$ 

Real questions: If

$$T=a_1X_1+a_2X_2+\ldots+a_nX_n,$$

can we

- compute the distribution of T in some easy cases?
- compute the expected value and variance of *T*? Focus:

$$T = X_1 + X_2$$

Consider the distribution P

Let  $\{X_1, X_2\}$  be a random sample of size 2 from P, and  $T = X_1 + X_2$ .

- Compute P[T = 40]
- Our Derive the probability mass function of T
- **③** Compute the expected value and the standard deviation of T

Let  $\{X_1, X_2\}$  be a random sample of size 2 from the exponential distribution with parameter  $\lambda$ 

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & \text{if } x \ge 0\\ 0 & \text{if } x < 0 \end{cases}$$

and  $T = X_1 + X_2$ . What is the distribution of T?

→ Ξ →

- If the distribution and the statistic T is simple, try to construct the pmf of the statistic (as in Example 1)
- **2** If the probability density function  $f_X(x)$  of X's is known, the
  - try to represent/compute the cumulative distribution (cdf) of  ${\cal T}$

$$\mathbb{P}[T \leq t]$$

• take the derivative of the function (with respect to t )

### Linear combination of normal random variables

MATH 450: Mathematical statistics

돈 돈 돈

#### Theorem

Let  $X_1, X_2, ..., X_n$  be independent normal random variables (with possibly different means and/or variances). Then

$$T = a_1 X_1 + a_2 X_2 + \dots a_n X_n$$

also follows the normal distribution.

What are the mean and the standard deviation of T?

• 
$$E(T) = a_1 E(X_1) + a_2 E(X_2) + \ldots + a_n E(X_n)$$
  
•  $\sigma_T^2 = a_1^2 \sigma_{X_1}^2 + a_2^2 \sigma_{X_2}^2 + \ldots + a_n^2 \sigma_{X_n}^2$ 

## Moment generating function

MATH 450: Mathematical statistics

æ

### Definition

The moment generating function (mgf) of a continuous random variable X is

$$M_X(t) = E(e^{tX}) = \int_{-\infty}^{\infty} e^{tx} f_X(x) dx$$

Reading: 3.4 and 4.2

#### Property

Two distributions have the same pdf if and only if they have the same moment generating function

MATH 450: Mathematical statistics

# Moment generating function

| Distribution                 | Moment-generating function $M_X(t)$              |
|------------------------------|--------------------------------------------------|
| Bernoulli $P(X=1) = p$       | $1-p+pe^t$                                       |
| Geometric $(1-p)^{k-1}p$     | $rac{pe^t}{1-(1-p)e^t} \ orall t< -\ln(1-p)$   |
| Binomial B( <i>n, p</i> )    | $ig(1-p+pe^tig)^n$                               |
| Poisson Pois(λ)              | $e^{\lambda(e^t-1)}$                             |
| Uniform (continuous) U(a, b) | $rac{e^{tb}-e^{ta}}{t(b-a)}$                    |
| Jniform (discrete) U(a, b)   | $\frac{e^{at}-e^{(b+1)t}}{(b-a+1)(1-e^t)}$       |
| lormal N(μ, σ²)              | $e^{t\mu+rac{1}{2}\sigma^2t^2}$                 |
| Chi-squared $\chi^2_k$       | $(1-2t)^{-\frac{k}{2}}$                          |
| Gamma Γ( <i>k, θ</i> )       | $(1-t	heta)^{-k}; orall t < rac{1}{	heta}$     |
| Exponential Exp( $\lambda$ ) | $\left(1-t\lambda^{-1} ight)^{-1},\ (t<\lambda)$ |
|                              | $t^{T}\left(u+\frac{1}{2}\Sigma t\right)$        |

æ

### Definition

Let  $X_1, X_2$  be a 2 independent random variables and  $T = X_1 + X_2$ , then

$$M_T(t) = M_{X_1}(t)M_{X_2}(t)$$

Hint:

$$M_T(t) = E(e^{tT}) = E(e^{t(X_1+X_2)}) = E(e^{tX_1} \cdot e^{tX_2})$$

Given that the mgf of a Poisson variables with mean  $\lambda$  is

 $e^{\lambda(e^t-1)}$ 

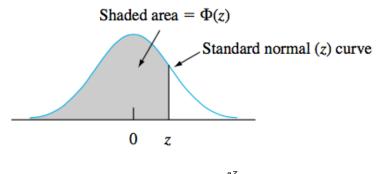
Suppose X and Y are independent Poisson random variables, where X has mean a and Y has mean b. Show that T = X + Yalso follows the Poisson distribution.

Given that the mgf of a normal random variables with mean  $\mu$  and variance  $\sigma^2$  is

$$e^{\mu t + rac{\sigma^2}{2}t^2}$$

Suppose X and Y are independent normal random variables. Show that T = X + Y also follows the normal distribution.

 $\Phi(z)$ 



$$\Phi(z) = P(Z \le z) = \int_{-\infty}^{2} f(y) \, dy$$

MATH 450: Mathematical statistics

æ

三 ▶ ...

▶ ∢ ⊒ ▶

| z   | .00   | .01   | .02   | .03   | .04   | .05   | .06   | .07   | .08   | .09   |
|-----|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| 0.0 | .5000 | .5040 | .5080 | .5120 | .5160 | .5199 | .5239 | .5279 | .5319 | .5359 |
| 0.1 | .5398 | .5438 | .5478 | .5517 | .5557 | .5596 | .5636 | .5675 | .5714 | .5753 |
| 0.2 | .5793 | .5832 | .5871 | .5910 | .5948 | .5987 | .6026 | .6064 | .6103 | .6141 |
| 0.3 | .6179 | .6217 | .6255 | .6293 | .6331 | .6368 | .6406 | .6443 | .6480 | .6517 |
| 0.4 | .6554 | .6591 | .6628 | .6664 | .6700 | .6736 | .6772 | .6808 | .6844 | .6879 |
| 0.5 | .6915 | .6950 | .6985 | .7019 | .7054 | .7088 | .7123 | .7157 | .7190 | .7224 |
| 0.6 | .7257 | .7291 | .7324 | .7357 | .7389 | .7422 | .7454 | .7486 | .7517 | .7549 |
| 0.7 | .7580 | .7611 | .7642 | .7673 | .7704 | .7734 | .7764 | .7794 | .7823 | .7852 |
| 0.8 | .7881 | .7910 | .7939 | .7967 | .7995 | .8023 | .8051 | .8078 | .8106 | .8133 |
| 0.9 | .8159 | .8186 | .8212 | .8238 | .8264 | .8289 | .8315 | .8340 | .8365 | .8389 |
| 1.0 | .8413 | .8438 | .8461 | .8485 | .8508 | .8531 | .8554 | .8577 | .8599 | .8621 |
| 1.1 | .8643 | .8665 | .8686 | .8708 | .8729 | .8749 | .8770 | .8790 | .8810 | .8830 |
| 1.2 | .8849 | .8869 | .8888 | .8907 | .8925 | .8944 | .8962 | .8980 | .8997 | .9015 |
| 1.3 | .9032 | .9049 | .9066 | .9082 | .9099 | .9115 | .9131 | .9147 | .9162 | .9177 |
| 1.4 | .9192 | .9207 | .9222 | .9236 | .9251 | .9265 | .9278 | .9292 | .9306 | .9319 |
| 1.5 | .9332 | .9345 | .9357 | .9370 | .9382 | .9394 | .9406 | .9418 | .9429 | .9441 |
| 1.6 | .9452 | .9463 | .9474 | .9484 | .9495 | .9505 | .9515 | .9525 | .9535 | .9545 |
| 1.7 | .9554 | .9564 | .9573 | .9582 | .9591 | .9599 | .9608 | .9616 | .9625 | .9633 |
| 1.8 | .9641 | .9649 | .9656 | .9664 | .9671 | .9678 | .9686 | .9693 | .9699 | .9706 |
| 1.9 | .9713 | .9719 | .9726 | .9732 | .9738 | .9744 | .9750 | .9756 | .9761 | .9767 |

#### **Table A.3** Standard Normal Curve Areas (cont.)



Let  $X_1, X_2, \ldots, X_{16}$  be a random sample from  $\mathcal{N}(1, 4)$  (that is, normal distribution with mean  $\mu = 1$  and standard deviation  $\sigma = 2$ ). Let  $\overline{X}$  be the sample mean

$$ar{X} = rac{X_1 + X_2 + \ldots + X_{16}}{16}$$

- What is the distribution of  $\bar{X}$ ?
- Compute  $P[\bar{X} \le 1.82]$