MATH 450: Mathematical statistics

September 17th, 2020

Lecture 6: The distribution of the sample mean

MATH 450: Mathematical statistics

Week 2	Chapter 6: Statistics and Sampling Distributions
Week 4 · · · · ·	Chapter 7: Point Estimation
Week 6 · · · · ·	Chapter 8: Confidence Intervals
Week 9 · · · · •	Chapter 9: Test of Hypothesis
Week 11 · · · · ·	Chapter 10: Two-sample inference
Week 12 · · · · •	Regression

MATH 450: Mathematical statistics

▲日 ▶ ▲圖 ▶ ▲ 画 ▶ ▲ 画 ▶ →

æ

- 6.1 Statistics and their distributions
- 6.2 The distribution of the sample mean
- 6.3 The distribution of a linear combination

Order $6.1 \rightarrow 6.3 \rightarrow 6.2$

Definition

The random variables $X_1, X_2, ..., X_n$ are said to form a (simple) random sample of size n if

- the X_i 's are independent random variables
- **2** every X_i has the same probability distribution

Given a random sample X_1, X_2, \ldots, X_n , and

$$T = a_1 X_1 + a_2 X_2 + \ldots + a_n X_n$$

- If we know the distribution of X_i's, can we obtain the distribution of T?
 - Simple cases
 - If $X'_i s$ follow normal distribution, then so does T.
- If we don't know the distribution of X_i's, can we still obtain/approximate the distribution of T?
 - Can we at least compute the mean and the variance?
 - When T is the sample mean, i.e. $a_1 = a_2 = \ldots = \frac{1}{n}$

Theorem

Let $X_1, X_2, ..., X_n$ be independent normal random variables (with possibly different means and/or variances). Then

$$T = a_1 X_1 + a_2 X_2 + \dots a_n X_n$$

also follows the normal distribution.

What are the mean and the standard deviation of T?

•
$$E(T) = a_1 E(X_1) + a_2 E(X_2) + \ldots + a_n E(X_n)$$

• $\sigma_T^2 = a_1^2 \sigma_{X_1}^2 + a_2^2 \sigma_{X_2}^2 + \ldots + a_n^2 \sigma_{X_n}^2$

What if X_i 's are not normal distributions?

MATH 450: Mathematical statistics

▲ 同 ▶ → 三 ▶

æ

∃ >

Given a random sample X_1, X_2, \ldots, X_n , and

$$T = a_1 X_1 + a_2 X_2 + \ldots + a_n X_n$$

If we don't know the distribution of X_i 's, can we obtain the distribution of T?

A B M A B M

Theorem

Let $X_1, X_2, ..., X_n$ be independent random variables (with possibly different means and/or variances). Define

$$T = a_1 X_1 + a_2 X_2 + \ldots + a_n X_n$$

then the mean and the standard deviation of T can be computed by

•
$$E(T) = a_1 E(X_1) + a_2 E(X_2) + \dots + a_n E(X_n)$$

•
$$\sigma_T^2 = a_1^2 \sigma_{X_1}^2 + a_2^2 \sigma_{X_2}^2 + \ldots + a_n^2 \sigma_{X_n}^2$$

Problem

A gas station sells three grades of gasoline: regular unleaded, extra unleaded, and super unleaded. These are priced at 2.20, 2.35, and 2.50 per gallon, respectively.

Let X_1 , X_2 , and X_3 denote the amounts of these grades purchased (gallons) on a particular day. Suppose the X_i 's are independent with $\mu_1 = 1000$, $\mu_2 = 500$, $\mu_3 = 300$, $\sigma_1 = 100$, $\sigma_2 = 80$, $\sigma_3 = 50$. Compute the expected value and the standard deviation of the revenue from sales

$$Y = 2.2X_1 + 2.35X_2 + 2.5X_3.$$

Bad news

In general, the mean and the variance do not define a probability distribution.

Problem

Given a random sample $X_1, X_2, ..., X_n$ from a distribution with mean μ and standard deviation σ , the mean is modeled by a random variable \bar{X} ,

$$\bar{X} = \frac{X_1 + X_2 + \ldots + X_n}{n}$$

- Compute $E(\bar{X})$
- Compute $Var(\bar{X})$

MATH 450: Mathematical statistics

Let $X_1, X_2, ..., X_n$ be a random sample from a distribution with mean value μ and standard deviation σ . Then

1. $E(\overline{X}) = \mu_{\overline{X}} = \mu$ **2.** $V(\overline{X}) = \sigma_{\overline{X}}^2 = \sigma^2/n$ and $\sigma_{\overline{X}} = \sigma/\sqrt{n}$

• • = • • = •

Law of large numbers

THEOREM

- If X_1, X_2, \ldots, X_n is a random sample from a distribution with mean μ and variance σ^2 , then \overline{X} converges to μ
 - **a.** In mean square $E[(\overline{X} \mu)^2] \rightarrow 0 \text{ as } n \rightarrow \infty$
 - **b.** In probability $P(|\overline{X} \mu| \ge \varepsilon) \rightarrow 0 \text{ as } n \rightarrow \infty$

Theorem

Let X_1, X_2, \ldots, X_n be a random sample from a distribution with mean μ and variance σ^2 . Then, in the limit when $n \to \infty$, the standardized version of \overline{X} have the standard normal distribution

$$\lim_{n\to\infty} \mathbb{P}\left(\frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \leq z\right) = \mathbb{P}[Z \leq z] = \Phi(z)$$

Rule of Thumb:

If n > 30, the Central Limit Theorem can be used for computation.

Problem

When a batch of a certain chemical product is prepared, the amount of a particular impurity in the batch is a random variable with mean value 4.0 g and standard deviation 1.5 g.

If 50 batches are independently prepared, what is the (approximate) probability that the sample average amount of impurity X is between 3.5 and 3.8 g?

Hint:

- First, compute $\mu_{\bar{X}}$ and $\sigma_{\bar{X}}$
- Note that

$$\underline{\bar{X} - \mu_{\bar{X}}}$$

$$\sigma_{\bar{X}}$$

is (approximately) standard normal.