MATH 450: Mathematical statistics

September 17th, 2020
Lecture 6: The distribution of the sample mean

Topics

Week 2	Chapter 6: Statistics and Sampling Distributions
Week 4	Chapter 7: Point Estimation
Week 6	Chapter 8: Confidence Intervals
Week 9	Chapter 9: Test of Hypothesis
Week 11	Chapter 10: Two-sample inference
Week 12	Regression

Overview

6.1 Statistics and their distributions
6.2 The distribution of the sample mean
6.3 The distribution of a linear combination

Order $6.1 \rightarrow 6.3 \rightarrow 6.2$

Random sample

Definition

The random variables $X_{1}, X_{2}, \ldots, X_{n}$ are said to form a (simple) random sample of size n if
(1) the X_{i} 's are independent random variables
(2) every X_{i} has the same probability distribution

Questions for this chapter

Given a random sample $X_{1}, X_{2}, \ldots, X_{n}$, and

$$
T=a_{1} X_{1}+a_{2} X_{2}+\ldots+a_{n} X_{n}
$$

- If we know the distribution of X_{i} 's, can we obtain the distribution of T ?
- Simple cases
- If $X_{i}^{\prime} s$ follow normal distribution, then so does T.
- If we don't know the distribution of X_{i} 's, can we still obtain/approximate the distribution of T ?
- Can we at least compute the mean and the variance?
- When T is the sample mean, i.e. $a_{1}=a_{2}=\ldots=\frac{1}{n}$

Linear combination of normal random variables

Theorem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent normal random variables (with possibly different means and/or variances). Then

$$
T=a_{1} X_{1}+a_{2} X_{2}+\ldots a_{n} X_{n}
$$

also follows the normal distribution.
What are the mean and the standard deviation of T ?

- $E(T)=a_{1} E\left(X_{1}\right)+a_{2} E\left(X_{2}\right)+\ldots+a_{n} E\left(X_{n}\right)$
- $\sigma_{T}^{2}=a_{1}^{2} \sigma_{X_{1}}^{2}+a_{2}^{2} \sigma_{X_{2}}^{2}+\ldots+a_{n}^{2} \sigma_{X_{n}}^{2}$

What if X_{i} 's are not normal distributions?

Given a random sample $X_{1}, X_{2}, \ldots, X_{n}$, and

$$
T=a_{1} X_{1}+a_{2} X_{2}+\ldots+a_{n} X_{n}
$$

If we don't know the distribution of X_{i} 's, can we obtain the distribution of T ?

Linear combination of random variables

Theorem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be independent random variables (with possibly different means and/or variances). Define

$$
T=a_{1} X_{1}+a_{2} X_{2}+\ldots+a_{n} X_{n}
$$

then the mean and the standard deviation of T can be computed by

- $E(T)=a_{1} E\left(X_{1}\right)+a_{2} E\left(X_{2}\right)+\ldots+a_{n} E\left(X_{n}\right)$
- $\sigma_{T}^{2}=a_{1}^{2} \sigma_{X_{1}}^{2}+a_{2}^{2} \sigma_{X_{2}}^{2}+\ldots+a_{n}^{2} \sigma_{X_{n}}^{2}$

Example 1

Problem

A gas station sells three grades of gasoline: regular unleaded, extra unleaded, and super unleaded. These are priced at 2.20, 2.35, and 2.50 per gallon, respectively.

Let X_{1}, X_{2}, and X_{3} denote the amounts of these grades purchased (gallons) on a particular day. Suppose the X_{i} 's are independent with $\mu_{1}=1000, \mu_{2}=500, \mu_{3}=300, \sigma_{1}=100, \sigma_{2}=80, \sigma_{3}=50$. Compute the expected value and the standard deviation of the revenue from sales

$$
Y=2.2 X_{1}+2.35 X_{2}+2.5 X_{3}
$$

Bad news

In general, the mean and the variance do not define a probability distribution.

Mean and variance of the sample mean

Problem

Given a random sample $X_{1}, X_{2}, \ldots, X_{n}$ from a distribution with mean μ and standard deviation σ, the mean is modeled by a random variable \bar{X},

$$
\bar{X}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}
$$

- Compute $E(\bar{X})$
- Compute $\operatorname{Var}(\bar{X})$

Mean and variance of the sample mean

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution with mean value μ and standard deviation σ. Then

1. $E(\bar{X})=\mu_{\bar{X}}=\mu$
2. $V(\bar{X})=\sigma_{\bar{X}}^{2}=\sigma^{2} / n$ and $\sigma_{\bar{X}}=\sigma / \sqrt{n}$

Law of large numbers

THEOREM
If $X_{1}, X_{2}, \ldots, X_{n}$ is a random sample from a distribution with mean μ and variance σ^{2}, then \bar{X} converges to μ
a. In mean square

$$
E\left[(\bar{X}-\mu)^{2}\right] \rightarrow 0 \text { as } n \rightarrow \infty
$$

b. In probability $\quad P(|\bar{X}-\mu| \geq \varepsilon) \rightarrow 0$ as $n \rightarrow \infty$

Theorem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution with mean μ and variance σ^{2}. Then, in the limit when $n \rightarrow \infty$, the standardized version of \bar{X} have the standard normal distribution

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \leq z\right)=\mathbb{P}[Z \leq z]=\Phi(z)
$$

Rule of Thumb:
If $n>30$, the Central Limit Theorem can be used for computation.

Example

Problem

When a batch of a certain chemical product is prepared, the amount of a particular impurity in the batch is a random variable with mean value 4.0 g and standard deviation 1.5 g .

If 50 batches are independently prepared, what is the (approximate) probability that the sample average amount of impurity X is between 3.5 and 3.8 g ?

Hint:

- First, compute $\mu_{\bar{X}}$ and $\sigma_{\bar{X}}$
- Note that

$$
\frac{\bar{X}-\mu_{\bar{X}}}{\sigma_{\bar{x}}}
$$

is (approximately) standard normal.

