MATH 450: Mathematical statistics

September 22nd, 2020
Lecture 7: Introduction to parameter estimation

Week $2 \ldots \ldots$.	Chapter 6: Statistics and Sampling Distributions
Week $4 \ldots \ldots$.	Chapter 7: Point Estimation
Week $6 \ldots \ldots$.	Chapter 8: Confidence Intervals
Week $9 \ldots \ldots$.	Chapter 9: Test of Hypothesis
Week $11 \ldots \ldots$.	Chapter 10: Two-sample inference
Week $12 \ldots \ldots$.	Regression

Theorem

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample from a distribution with mean μ and variance σ^{2}. Then, in the limit when $n \rightarrow \infty$, the standardized version of \bar{X} have the standard normal distribution

$$
\lim _{n \rightarrow \infty} \mathbb{P}\left(\frac{\bar{X}-\mu}{\sigma / \sqrt{n}} \leq z\right)=\mathbb{P}[Z \leq z]=\Phi(z)
$$

Rule of Thumb:
If $n>30$, the Central Limit Theorem can be used for computation.

Example 1

Problem

When a batch of a certain chemical product is prepared, the amount of a particular impurity in the batch is a random variable with mean value 4.0 g and standard deviation 1.5 g .

If 50 batches are independently prepared, what is the (approximate) probability that the sample average amount of impurity X is between 3.5 and 3.8 g ?

Hint:

- First, compute $\mu_{\bar{X}}$ and $\sigma_{\bar{X}}$
- Note that

$$
\frac{\bar{X}-\mu_{\bar{X}}}{\sigma_{\bar{x}}}
$$

is (approximately) standard normal.

Example 2

Problem

A restaurant reports that the tip percentage at their restaurant has a mean value of 18% and a standard deviation of 6%.

What is the approximate probability that the sample mean tip percentage for a random sample of 40 bills is between 16% and 20% ?

Chapter 7: Overview

7.1 Point estimate

- unbiased estimator
- mean squared error
7.2 Methods of point estimation
- method of moments
- method of maximum likelihood.
7.3 Sufficient statistic
7.4 Information and Efficiency
- Large sample properties of the maximum likelihood estimator

Question of this chapter

- Given a random sample X_{1}, \ldots, X_{n} from a distribution with pmf/pdf $f(x, \theta)$ parameterized by a parameter θ
- Goal: Estimate θ

Point estimate

$$
f(x, \theta)
$$

Definition

A point estimate $\hat{\theta}$ of a parameter θ is a single number that can be regarded as a sensible value for θ.

$$
\begin{aligned}
\text { population parameter } & \Longrightarrow \text { sample } \\
\theta & \Longrightarrow X_{1}, X_{2}, \ldots, X_{n}
\end{aligned}
$$

Typical example

Problem

Consider a random sample X_{1}, \ldots, X_{10} from the pdf

$$
f(x)=\frac{1+\theta x}{2} \quad-1 \leq x \leq 1
$$

Assume that the obtained data are

$$
\begin{gathered}
0.92,-0.1,-0.2,0.75,0.65,-0.53 \\
0.36,-0.68, \quad 0.97,-0.33, \\
0.79
\end{gathered}
$$

Provide an estimate of θ.

Mean Squared Error

- Measuring error of estimation

$$
|\hat{\theta}-\theta| \quad \text { or } \quad(\hat{\theta}-\theta)^{2}
$$

- The error of estimation is random

Definition

The mean squared error of an estimator $\hat{\theta}$ is

$$
E\left[(\hat{\theta}-\theta)^{2}\right]
$$

MATH 350 review

Problem

Let Y be a random variable and a is a constant. Prove that

$$
E\left[(Y-a)^{2}\right]=\operatorname{Var}(Y)+(E[Y]-a)^{2}
$$

Hint: Recall that

$$
\operatorname{Var}[Y]=E\left[Y^{2}\right]-(E[Y])^{2}
$$

Bias-variance decomposition

Theorem

$$
\operatorname{MSE}(\hat{\theta})=E\left[(\hat{\theta}-\theta)^{2}\right]=V(\hat{\theta})+(E(\hat{\theta})-\theta)^{2}
$$

Bias-variance decomposition
Mean squared error $=$ variance of estimator $+(\text { bias })^{2}$

Bias-variance decomposition

Low bias
High bias

Statistical bias vs. social bias

How things should be

Unbiased estimators

Definition

A point estimator $\hat{\theta}$ is said to be an unbiased estimator of θ if

$$
E(\hat{\theta})=\theta
$$

for every possible value of θ.

Unbiased estimator
\Leftrightarrow Bias $=0$
\Leftrightarrow Mean squared error $=$ variance of estimator

Sample proportion

- A test is done with probability of success p. Denote the outcome by let X (success: 1, failure: 0)

$$
E[X]=p, \quad \operatorname{Var}[X]=p(1-p)
$$

- n independent tests are done, let $X_{1}, X_{2}, \ldots, X_{n}$ be the outcomes
- Let

$$
\hat{p}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}
$$

- We know that

$$
E[\hat{p}]=p
$$

thus \hat{p} is an unbiased estimator

- Compute $\operatorname{MSE}(\hat{p})$

