MATH 450: Mathematical statistics

September 29th, 2020
Lecture 9: Method of maximum likelihood

Week 2	Chapter 6: Statistics and Sampling Distributions
Week 4	Chapter 7: Point Estimation
Week 7	Chapter 8: Confidence Intervals
Week 10	Chapter 9: Test of Hypothesis
Week 11	Chapter 10: Two-sample inference
Week 13	Regression

Chapter 7: Overview

7.1 Point estimate

- unbiased estimator
- mean squared error
7.2 Methods of point estimation
- method of moments
- method of maximum likelihood.
7.3 Sufficient statistic
7.4 Information and Efficiency
- Large sample properties of the maximum likelihood estimator

Point estimate

$$
f(x, \theta)
$$

Definition

A point estimate $\hat{\theta}$ of a parameter θ is a single number that can be regarded as a sensible value for θ.

$$
\begin{aligned}
\text { population parameter } & \Longrightarrow \text { sample } \\
\theta & \Longrightarrow X_{1}, X_{2}, \ldots, X_{n}
\end{aligned}
$$

Estimate vs estimator

$$
\begin{aligned}
\text { sample } & \Longrightarrow \text { estimator } \\
X_{1}, X_{2}, \ldots, X_{n} & \Longrightarrow \hat{\theta} \\
\text { observed data } & \Longrightarrow \text { estimate } \\
x_{1}, x_{2}, \ldots, x_{n} & \Longrightarrow \hat{\theta}
\end{aligned}
$$

Mean Squared Error

- Measuring error of estimation

$$
|\hat{\theta}-\theta| \quad \text { or } \quad(\hat{\theta}-\theta)^{2}
$$

- The error of estimation is random

Definition

The mean squared error of an estimator $\hat{\theta}$ is

$$
E\left[(\hat{\theta}-\theta)^{2}\right]
$$

Bias-variance decomposition

Theorem

$$
\operatorname{MSE}(\hat{\theta})=E\left[(\hat{\theta}-\theta)^{2}\right]=V(\hat{\theta})+(E(\hat{\theta})-\theta)^{2}
$$

Bias-variance decomposition
Mean squared error $=$ variance of estimator $+(\text { bias })^{2}$

Unbiased estimators

Definition

A point estimator $\hat{\theta}$ is said to be an unbiased estimator of θ if

$$
E(\hat{\theta})=\theta
$$

for every possible value of θ.

Unbiased estimator
\Leftrightarrow Bias $=0$
\Leftrightarrow Mean squared error $=$ variance of estimator

Method of moments

- We can compute $E(X) \rightarrow$ the answer will be a function of θ
- For large n, we have

$$
\bar{X}=\frac{X_{1}+X_{2}+\ldots+X_{n}}{n}
$$

is close to $E[X]$

- We can compute \bar{x} from the data \rightarrow approximate λ

Example 1

Problem

Let X_{1}, \ldots, X_{10} be a random sample from a distribution with pdf

$$
f(x)=\left\{\begin{array}{l}
(\theta+1) x^{\theta} \quad \text { if } 0 \leq x \leq 1 \\
0 \quad \text { otherwise }
\end{array}\right.
$$

A random sample of ten students yields data

$$
\begin{aligned}
& x_{1}=.92, x_{2}=.79, x_{3}=.90, x_{4}=.65, x_{5}=.86, \\
& x_{6}=.47, x_{7}=.73, x_{8}=.97, x_{9}=.94, x_{10}=.77
\end{aligned}
$$

Provide an estimate of θ.

Method of moments: Example 2

Problem

Suppose that for a parameter $0 \leq \theta \leq 1, X$ is the outcome of the roll of a four-sided tetrahedral die

x	1	2	3	4
$p(x)$	$\frac{3 \theta}{4}$	$\frac{\theta}{4}$	$\frac{3(1-\theta)}{4}$	$\frac{(1-\theta)}{4}$

Suppose the die is rolled 10 times with outcomes

$$
4,1,2,3,1,2,3,4,2,3
$$

Use the method of moments to obtain an estimate of θ.

Moments

- Let X_{1}, \ldots, X_{n} be a random sample from a normal distribution with pmf or pdf $f(x)$.
- For $k=1,2,3, \ldots$, the $k^{\text {th }}$ population moment, or $k^{t h}$ moment of the distribution $f(x)$, is

$$
E\left(X^{k}\right)
$$

- First moment: the mean
- Second moment: $E\left(X^{2}\right)$

Sample moments

- Let X_{1}, \ldots, X_{n} be a random sample from a distribution with pmf or pdf $f(x)$.
- For $k=1,2,3, \ldots$, the $k^{\text {th }}$ sample moment is

$$
\frac{X_{1}^{k}+X_{2}^{k}+\ldots+X_{n}^{k}}{n}
$$

The law of large numbers provides that when $n \rightarrow \infty$

$$
\frac{X_{1}^{k}+X_{2}^{k}+\ldots+X_{n}^{k}}{n} \rightarrow E\left(X^{k}\right)
$$

Method of moments: ideas

- Let X_{1}, \ldots, X_{n} be a random sample from a distribution with pmf or pdf

$$
f\left(x ; \theta_{1}, \theta_{2}, \ldots, \theta_{m}\right)
$$

- Assume that for $k=1, \ldots, m$

$$
\hat{u}_{k}=\frac{X_{1}^{k}+X_{2}^{k}+\ldots+X_{n}^{k}}{n}=E\left(X^{k}\right)
$$

- Solve the system of equations for $\theta_{1}, \theta_{2}, \ldots, \theta_{m}$

Method of moments: Example 3

Problem

Let $\beta>1$ and X_{1}, \ldots, X_{n} be a random sample from a distribution with $p d f$

$$
f(x)= \begin{cases}\frac{\beta}{x^{\beta+1}} & \text { if } x>1 \\ 0 & \text { otherwise }\end{cases}
$$

Use the method of moments to obtain an estimator of β.

Method of moments: Example 4

Problem

Let X_{1}, \ldots, X_{n} be a random sample from the normal distribution $\mathcal{N}\left(\mu, \sigma^{2}\right)$.
Use the method of moments to obtain estimators of μ and σ.

Method of maximum likelihood

Random sample

Definition

The random variables $X_{1}, X_{2}, \ldots, X_{n}$ are said to form a (simple) random sample of size n if
(1) the X_{i} 's are independent random variables
(2) every X_{i} has the same probability distribution

Independent random variables

Definition

Two random variables X and Y are said to be independent if for every pair of x and y values,

$$
P(X=x, Y=y)=P_{X}(x) \cdot P_{Y}(y) \quad \text { if the variables are discrete }
$$

or

$$
f(x, y)=f_{X}(x) \cdot f_{Y}(y) \quad \text { if the variables are continuous }
$$

Random sample

Let $X_{1}, X_{2}, \ldots, X_{n}$ be a random sample of size n from a distribution with density function $f_{X}(x)$.

Then the density of the joint distribution of $\left(X_{1}, X_{2}, \ldots, X_{n}\right)$ is

$$
f_{\text {joint }}\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\prod_{i=1}^{n} f_{X}\left(x_{i}\right)
$$

Maximum likelihood estimator

- Let $X_{1}, X_{2}, \ldots, X_{n}$ have joint pmf or pdf

$$
f_{\text {joint }}\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)
$$

where θ is unknown.

- When x_{1}, \ldots, x_{n} are the observed sample values and this expression is regarded as a function of θ, it is called the likelihood function.
- The maximum likelihood estimates $\theta_{M L}$ are the value for θ that maximize the likelihood function:

$$
f_{\text {joint }}\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta_{M L}\right) \geq f_{\text {joint }}\left(x_{1}, x_{2}, \ldots, x_{n} ; \theta\right)
$$

How to find the MLE?

- Step 1: Write down the likelihood function.
- Step 2: Can you find the maximum of this function?
- Step 3: Try taking the logarithm of this function.
- Step 4: Find the maximum of this new function.

To find the maximum of a function of θ :

- compute the derivative of the function with respect to θ
- set this expression of the derivative to 0
- solve the equation

Example 1

Problem

Let X_{1}, \ldots, X_{10} be a random sample from the exponential distribution with parameter λ, that is

$$
f(x ; \lambda)=\lambda e^{-\lambda x}, \quad x \geq 0
$$

The observed data are

$$
\begin{aligned}
& 3.11,0.64,2.55,2.20,5.44, \\
& 3.42,1.39,8.13,1.82,1.30
\end{aligned}
$$

Use the method of maximum likelihood to obtain an estimate of λ.

Example 2

Problem

Let X_{1}, \ldots, X_{10} be a random sample from a distribution with pdf

$$
f(x)=\left\{\begin{array}{l}
(\theta+1) x^{\theta} \quad \text { if } 0 \leq x \leq 1 \\
0 \quad \text { otherwise }
\end{array}\right.
$$

A random sample of ten students yields data

$$
\begin{aligned}
& x_{1}=.92, x_{2}=.79, x_{3}=.90, x_{4}=.65, x_{5}=.86, \\
& x_{6}=.47, x_{7}=.73, x_{8}=.97, x_{9}=.94, x_{10}=.77
\end{aligned}
$$

Use the method of maximum likelihood to obtain an estimate of θ.

Example 3

Problem

Let $\beta>1$ and X_{1}, \ldots, X_{n} be a random sample from a distribution with pdf

$$
f(x)= \begin{cases}\frac{\beta}{x^{\beta+1}} & \text { if } x>1 \\ 0 & \text { otherwise }\end{cases}
$$

Use the method of maximum likelihood to obtain an estimator of β.

Example 4

Problem

Let X_{1}, \ldots, X_{n} be a random sample from the normal distribution $\mathcal{N}\left(0, \sigma^{2}\right)$, that is

$$
f(x, \theta)=\frac{1}{\sigma \sqrt{2 \pi}} e^{-\frac{x^{2}}{2 \sigma^{2}}}
$$

Use the method of maximum likelihood to obtain an estimator of σ.

