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Topics

Week 2 · · · · · ·• Chapter 6: Statistics and Sampling
Distributions

Week 4 · · · · · ·• Chapter 7: Point Estimation

Week 7 · · · · · ·• Chapter 8: Confidence Intervals

Week 10 · · · · · ·• Chapter 9: Test of Hypothesis

Week 11 · · · · · ·• Chapter 10: Two-sample inference

Week 13 · · · · · ·• Regression
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Chapter 7: Overview

7.1 Point estimate

unbiased estimator
mean squared error

7.2 Methods of point estimation

method of moments
method of maximum likelihood.

7.3 Sufficient statistic

7.4 Information and Efficiency

Large sample properties of the maximum likelihood estimator
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Sufficient statistic
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Sufficient statistic

Definition

A statistic T = t(X1, . . . ,Xn) is said to be sufficient for making
inferences about a parameter θ if the joint distribution of
X1,X2, . . . ,Xn given that T = t does not depend upon θ for every
possible value t of the statistic T .
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Fisher-Neyman factorization theorem

Theorem

T is sufficient for θ if and only if nonnegative functions g and h
can be found such that

f (x1, x2, . . . , xn; θ) = g(t(x1, x2, . . . , xn), θ) · h(x1, x2, . . . , xn)

i.e. the joint density can be factored into a product such that one
factor, h does not depend on θ; and the other factor, which does
depend on θ, depends on x only through t(x).
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Jointly sufficient statistic

Definition

The m statistics T1 = t1(X1, . . . ,Xn), T2 = t2(X1, . . . ,Xn), . . .,
Tm = tm(X1, . . . ,Xn) are said to be jointly sufficient for the
parameters θ1, θ2, . . . , θk if the joint distribution of X1, . . . ,Xn

given that
T1 = t1,T2 = t2, . . . ,Tm = tm

does not depend upon θ1, θ2, . . . , θk for every possible value
t1, t2, . . . , tm of the statistics.
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Fisher-Neyman factorization theorem

Theorem

T1,T2, . . . ,Tm are sufficient for θ1, θ2, . . . , θk if and only if
nonnegative functions g and h can be found such that

f (x1, x2, . . . , xn; θ1, θ2, . . . , θk) = g(t1, t2, . . . , tm, θ1, θ2, . . . , θk)

· h(x1, x2, . . . , xn)
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Example 3

Let X1,X2, ...,Xn be a random sample from N (µ, σ2)

fX (x) =
1√
2πσ

e−
(x−µ)2

2σ2

Prove that

T1 = X1 + . . .+ Xn, T2 = X 2
1 + X 2

2 + . . .+ X 2
n

are jointly sufficient for the two parameters µ and σ.
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Example 4

Let X1,X2, ...,Xn be a random sample from a Gamma
distribution

fX (x) =
1

Γ(α)βα
xα−1e−x/β

where α, β is unknown.

Prove that

T1 = X1 + . . .+ Xn, T2 =
n∏

i=1

Xi

are jointly sufficient for the two parameters α and β.
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Information
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Fisher information

Definition

The Fisher information I (θ) in a single observation from a pmf or

pdf f (x ; θ) is the variance of the random variable U = ∂ ln f (X ,θ)
∂θ ,

which is

I (θ) = Var

[
∂ ln f (X , θ)

∂θ

]
Note: We always have E [U] = 0
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Fisher information

We have ∑
x

f (x , θ) = 1 ∀θ

Thus

E [U] = E

[
∂ ln f (X , θ)

∂θ

]
=
∑
x

∂ ln f (x , θ)

∂θ
f (x , θ)

=
∑
x

∂f (x , θ)

∂θ
= 0
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Example

Problem

Let X be distributed by

x 0 1

f (x , θ) 1− θ θ

Compute I (X , θ).

Hint:

If x = 1, then f (x , θ) = θ. Thus

u(x) =
∂ ln f (x , θ)

∂θ
=

1

θ

How about x = 0?
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Example

Problem

Let X be distributed by

x 0 1

f (x , θ) 1− θ θ

Compute I (X , θ).

We have

Var [U] = E [U2]− (E [U])2 = E [U2]

=
∑
x=0,1

U2(x)f (x , θ)

=
1

(1− θ)2
· (1− θ) +

1

θ2
· θ
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The Cramer-Rao Inequality

Theorem

Assume a random sample X1,X2, ...,Xn from the distribution with
pmf or pdf f (x , θ) such that the set of possible values does not
depend on θ. If the statistic T = t(X1,X2, ...,Xn) is an unbiased
estimator for the parameter θ, then

Var(T ) ≥ 1

n · I (θ)
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Proof for n = 1

Recall that E [U] = 0 and E [T ] = θ (since T is an unbiased
estimator of θ) we have

Cov(T ,U) = E [TU]− E [U] · E [T ]

=
∑
x

t(x)
∂ ln f (x , θ)

∂θ
f (x , θ)

=
∑
x

t(x)
∂f (x , θ)

∂θ

1

f (x , θ)
f (x , θ)

=
∂

∂θ

(∑
x

t(x)f (x , θ)

)
= 1
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Proof for n = 1

The Cauchy–Schwarz inequality shows that

Cov(T ,U) ≤
√

Var(T ) · Var(U)

which implies

Var(T ) ≥ 1

I (θ)
.
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Efficiency

Theorem

Let T = t(X1,X2, ...,Xn) is an unbiased estimator for the
parameter θ, the ratio of the lower bound to the variance of T is
its efficiency

Efficiency =
1

nI (θ)V (T )
≤ 1

T is said to be an efficient estimator if T achieves the Cramer–Rao
lower bound (i.e., the efficiency is 1).

Note: An efficient estimator is a minimum variance unbiased
(MVUE) estimator.

MATH 450: Mathematical statistics



Large Sample Properties of the MLE

Theorem

Given a random sample X1,X2, ...,Xnfrom the distribution with
pmf or pdf f (x , θ) such that the set of possible values does not
depend on θ. Then for large n the maximum likelihood estimator θ̂
has approximately a normal distribution with mean θ and variance

1
n·I (θ) .

More precisely, the limiting distribution of
√

n(θ̂ − θ) is normal
with mean 0 and variance 1/I (θ).
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Minimum variance unbiased estimator (MVUE)
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Minimum variance unbiased estimator (MVUE)

Definition

Among all estimators of θ that are unbiased, choose the one that
has minimum variance. The resulting θ̂ is called the minimum
variance unbiased estimator (MVUE) of θ.

Recall:

Mean squared error = variance of estimator + (bias)2

unbiased estimator ⇒ bias =0

⇒ MVUE has minimum mean squared error among unbiased
estimators
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What is the best estimator of the mean?

Question: Let X1, . . . ,Xn be a random sample from a distribution
with mean µ. What is the best estimator of µ?

Answer: It depends.

Normal distribution → sample mean X̄

Cauchy distribution → sample median X̃

Uniform distribution →

X̂e =
largest number + smaller number

2

In all cases, 10% trimmed mean performs pretty well
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MVUE of normal distributions

Theorem

Let X1, . . . ,Xn be a random sample from a normal distribution
with mean µ. Then the estimator µ̂ = X̄ is the MVUE for µ.
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