MATH 450: Mathematical statistics

Oct 15th, 2020

Lecture 14: Large-sample CIs of the population mean

MATH 450: Mathematical statistics

Week 2 · · · · •	Chapter 6: Statistics and Sampling Distributions
Week 4 · · · · ·	Chapter 7: Point Estimation
Week 7 · · · · ·	Chapter 8: Confidence Intervals
Week 10 · · · · •	Chapter 9: Test of Hypothesis
Week 11 · · · · ·	Chapter 10: Two-sample inference
Week 13 · · · · ·	Regression

★ ∃ → ★

문 문

8.1 Basic properties of confidence intervals (CIs)

- Interpreting Cls
- General principles to derive CI
- 8.2 Large-sample confidence intervals for a population mean
 - Using the Central Limit Theorem to derive CIs
- 8.3 Intervals based on normal distribution
 - Using Student's t-distribution
- 8.4 CIs for standard deviation

- Let $X_1, X_2, ..., X_n$ be a random sample from a distribution $f(x, \theta)$
- In Chapter 7, we learnt methods to construct an estimate $\hat{\theta}$ of θ
- Goal: we want to indicate the degree of uncertainty associated with this random prediction
- One way to do so is to construct a *confidence interval* $[\hat{\theta} a, \hat{\theta} + b]$ such that

$$P[heta \in [\hat{ heta} - a, \hat{ heta} + b]] = 95\%$$

If X_1, X_2, \ldots, X_n is a random sample from a distribution $f(x, \theta)$, then

- Find a random variable $Y = h(X_1, X_2, ..., X_n; \theta)$ such that the probability distribution of Y does not depend on θ or on any other unknown parameters.
- Find constants *a*, *b* such that

$$P[a < h(X_1, X_2, \dots, X_n; \theta) < b] = 0.95$$

• Manipulate these inequalities to isolate θ

$$P[\ell(X_1, X_2, \dots, X_n) < \theta < u(X_1, X_2, \dots, X_n)] = 0.95$$

Confidence intervals for a population mean

MATH 450: Mathematical statistics

- Section 8.1
 - Normal distribution
 - σ is known
- Section 8.2
 - Normal distribution
 - ightarrow use Central Limit Theorem ightarrow needs n>30
 - σ is known
 - \rightarrow replace σ by $s \rightarrow$ needs n > 40
- Section 8.3
 - Normal distribution
 - σ is known
 - \rightarrow Introducing *t*-distribution

z-critical value

NOTATION z_{α} will denote the value on the measurement axis for which α of the area under the *z* curve lies to the right of z_{α} . (See Figure 4.19.)

For example, $z_{.10}$ captures upper-tail area .10 and $z_{.01}$ captures upper-tail area .01.

Figure 4.19 z_{α} notation illustrated

Since α of the area under the standard normal curve lies to the right of z_{α} , $1 - \alpha$ of the area lies to the left of z_{α} . Thus z_{α} is the $100(1 - \alpha)$ th percentile of the standard normal distribution. By symmetry the area under the standard normal curve to the left of $-z_{\alpha}$ is also α . The z_{α} 's are usually referred to as z critical values. Table 4.1 lists the most useful standard normal percentiles and z_{α} values.

< ロ > < 同 > < 三 > < 三 >

$100(1-\alpha)\%$ confidence interval

Figure 8.4 $P(-z_{\alpha/2} \le Z \le z_{\alpha/2}) = 1 - \alpha$

MATH 450: Mathematical statistics

▶ ★ 문 ► ★ 문 ► ...

3

8.1: Normal distribution with know σ

- Assumptions:
 - Normal distribution
 - σ is known
- 100(1 α)% confidence interval
 If after observing X₁ = x₁, X₂ = x₂,..., X_n = x_n, we compute the observed sample mean x̄. Then

$$\left(\bar{x}-z_{\alpha/2}\frac{\sigma}{\sqrt{n}},\bar{x}+z_{\alpha/2}\frac{\sigma}{\sqrt{n}}\right)$$

is a 100(1 – lpha)% confidence interval of μ

Interpreting confidence intervals

95% confidence interval: If we repeat the experiment many times, the interval contains μ about 95% of the time

Example

Assume that the helium porosity (in percentage) of coal samples taken from any particular seam is normally distributed with true standard deviation $\sigma = .75$.

- Compute a 95% CI for the true average porosity of a certain seam if the average porosity for 20 specimens from the seam was 4.85.
- How large a sample size is necessary if the width of the 95% interval is to be .40?

- Section 8.1
 - Normal distribution
 - σ is known
- Section 8.2
 - Normal distribution
 - ightarrow use Central Limit Theorem ightarrow needs n>30
 - σ is known
 - \rightarrow replace σ by $s \rightarrow$ needs n > 40
- Section 8.3
 - Normal distribution
 - σ is known
 - \rightarrow Introducing *t*-distribution

8.2: Large-sample CIs of the population mean

MATH 450: Mathematical statistics

Measures of Variability: deviations from the mean

Given a data set x_1, x_2, \ldots, x_n :

• The sample variance, denoted by s^2 , is given by

$$s^2 = rac{\sum_{i=1}^n (x_i - \bar{x})^2}{n-1}$$

(We also refer to $s = \sqrt{s^2}$ is the sample standard deviation)

Computing formula for the numerator

$$S_{xx} = \sum_{i=1}^{n} (x_i - \bar{x})^2 = \sum_{i=1}^{n} x_i^2 - \frac{1}{n} \left(\sum_{i=1}^{n} x_i \right)^2$$

Central Limit Theorem

$$\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$$

is approximately normal when n > 30

- Moreover, when *n* is sufficiently large $s \approx \sigma$
- Conclusion:

$$rac{ar{X}-\mu}{s/\sqrt{n}}$$

is approximately normal when n is sufficiently large

If n>40, we can ignore the normal assumption and replace σ by s

If after observing $X_1 = x_1$, $X_2 = x_2$,..., $X_n = x_n$ (n > 40), we compute the observed sample mean \bar{x} and sample standard deviation s. Then

$$\left(ar{x} - 1.96rac{s}{\sqrt{n}}, ar{x} + 1.96rac{s}{\sqrt{n}}
ight)$$

is a 95% confidence interval of μ

If after observing $X_1 = x_1$, $X_2 = x_2$,..., $X_n = x_n$ (n > 40), we compute the observed sample mean \bar{x} and sample standard deviation s. Then

$$\left(\bar{x}-z_{\alpha/2}\frac{s}{\sqrt{n}},\bar{x}+z_{\alpha/2}\frac{s}{\sqrt{n}}\right)$$

is a 95% confidence interval of μ

One-sided Cls (Confidence bounds)

MATH 450: Mathematical statistics

э

A large-sample upper confidence bound for μ is

$$\mu < \bar{x} + z_{\alpha} \cdot \frac{s}{\sqrt{n}}$$

and a large-sample lower confidence bound for μ is

$$\mu > \bar{x} - z_{\alpha} \cdot \frac{s}{\sqrt{n}}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

Cls:

• $100(1-\alpha)\%$ confidence

$$\left(\bar{x}-z_{\alpha/2}rac{s}{\sqrt{n}},\bar{x}+z_{\alpha/2}rac{s}{\sqrt{n}}
ight)$$

• 95% confidence

$$\left(ar{x}-1.96rac{s}{\sqrt{n}},ar{x}+1.96rac{s}{\sqrt{n}}
ight)$$

One-sided CIs:

• $100(1-\alpha)\%$ confidence

$$\left(-\infty, \bar{x} + z_{\alpha} \frac{s}{\sqrt{n}}\right)$$

• 95% confidence

$$\left(-\infty, \bar{x} + 1.64 \frac{s}{\sqrt{n}}\right)$$

Problem

Determine the confidence level for each of the following large-sample confidence intervals/bounds:

(a) $\bar{x} + 0.84s/\sqrt{n}$ (b) $(\bar{x} - 0.84s/\sqrt{n}, \bar{x} + 0.84s/\sqrt{n})$ (c) $\bar{x} - 2.05s/\sqrt{n}$

					×***				x-7	×
z	.00	.01	.02	.03	.04	.05	.06	.07	.08	.09
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
).1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
).2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
).3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
).4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
).5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
).6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
).7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
).9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
.3	.9032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
.4	.9192	.9207	.9222	.9236	.9251	.9265	.9278	.9292	.9306	.9319
.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
.2	.9861	.9864	.9868	.9871	.9875	.9878	.9881	.9884	.9887	.9890
.3	.9893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
.1	.9990	.9991	.9991	.9991	.9992	.9992	.9992	.9992	.9993	.9993
.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997

MATH 450: Mathematical statistics

문 🛌 문

Example

A sample of 66 obese adults was put on a low-carbohydrate diet for a year. The average weight loss was 11 lb and the standard deviation was 19 lb. Calculate a 99% lower confidence bound for the true average weight loss

8.3: Intervals based on normal distributions

돈 돈 돈

- the population of interest is normal (i.e., X₁,..., X_n constitutes a random sample from a normal distribution N(μ, σ²)).
- σ is unknown
- \rightarrow we want to consider cases when *n* is small.

• When n < 40, S is no longer close to σ . Thus

$$T = \frac{\bar{X} - \mu}{S/\sqrt{n}}$$

does not follow the standard normal distribution.

- {Section 6} But since we know the distribution of *X*, technically we can compute the distribution of *T*
- Moreover, the distribution of T does not depend on μ and σ {More reading: Section 6.4}

t distributions with degree of freedom ν

Probability density function

$$f(t) = \frac{\Gamma(\frac{\nu+1}{2})}{\sqrt{\nu\pi}\,\Gamma(\frac{\nu}{2})} \left(1 + \frac{t^2}{\nu}\right)^{-\frac{\nu+1}{2}}$$

MATH 450: Mathematical statistics

PROPERTIES OF T DISTRI-BUTIONS

- 1. Each t_v curve is bell-shaped and centered at 0.
- **2.** Each t_v curve is more spread out than the standard normal (z) curve.
- **3.** As v increases, the spread of the t_v curve decreases.
- As v → ∞, the sequence of t_v curves approaches the standard normal curve (so the z curve is often called the t curve with df = ∞).

▲ □ ▶ ▲ □ ▶ ▲

When \bar{X} is the mean of a random sample of size n from a normal distribution with mean μ , the rv

$$rac{ar{X}-\mu}{S/\sqrt{n}}$$

has the *t* distribution with n - 1 degree of freedom (df).

()

t distributions

Let $t_{\alpha,\nu}$ = the number on the measurement axis for which the area under the *t* curve with *v* df to the right of $t_{\alpha,\nu}$, is α ; $t_{\alpha,\nu}$ is called a *t* critical value.

Figure 8.7 A pictorial definition of $t_{\alpha,\nu}$

• Instead of looking up the normal Z-table A3, look up the two *t*-tables A5 and A7.

Idea

$$P[T \ge t_{\alpha,\nu}] = \alpha$$

- {From t, find α } \rightarrow using table A7
- {From α , find t} \rightarrow using table A5

 $t \to \overline{\alpha}$

Table A.7 t Curve Tail Areas

												_	/		ī.	1	4	
															0	† t		
1	, 1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
0.0	.500	.500	.500	.500	.500	.500	.500	.500	.500	.500	.500	.500	.500	.500	.500	.500	.500	.500
0.1	.468	.465	.463	.463	.462.	.462	.462	.461	.461	.461	.461	.461	.461	.461	.461	.461	.461	.461
0.2	.437	.430	.427	.426	.425	.424	.424	.423	.423	.423	.423	.422	.422	.422	.422	.422	.422	.422
0.3	.407	.396	.392	.390	.388	.387	.386	.386	.386	.385	.385	.385	.384	.384	.384	.384	.384	.384
0.4	.379	.364	.358	.355	.353	.352	.351	.350	.349	.349	.348	.348	.348	.347	.347	.347	.347	.347
0.5	.352	.333	.326	.322	.319	.317	.316	.315	.315	.314	.313	.313	.313	.312	.312	.312	.312	.312
0.6	.328	.305	.295	.290	.287	.285	.284	.283	.282	.281	.280	.280	.279	.279	.279	.278	.278	.278
0.7	.306	.278	.267	.261	.258	.255	.253	.252	.251	.250	.249	.249	.248	.247	.247	.247	.247	.246
0.8	.285	.254	.241	.234	.230	.227	.225	.223	.222	.221	.220	.220	.219	.218	.218	.218	.217	.217
0.9	.267	.232	.217	.210	.205	.201	.199	.197	.196	.195	.194	.193	.192	.191	.191	.191	.190	.190
1.0	.250	.211	.196	.187	.182	.178	.175	.173	.172	.170	.169	.169	.168	.167	.167	.166	.166	.165
1.1	.235	.193	.176	.167	.162	.157	.154	.152	.150	.149	.147	.146	.146	.144	.144	.144	.143	.143
1.2	.221	.177	.158	.148	.142	.138	.135	.132	.130	.129	.128	.127	.126	.124	.124	.124	.123	.123
1.3	.209	.162	.142	.132	.125	.121	.117	.115	.113	.111	.110	.109	.108	.107	.107	.106	.105	.105
1.4	.197	.148	.128	.117	.110	.106	.102	.100	.098	.096	.095	.093	.092	.091	.091	.090	.090	.089
1.5	.187	.136	.115	.104	.097	.092	.089	.086	.084	.082	.081	.080	.079	.077	.077	.077	.076	.075
1.6	.178	.125	.104	.092	.085	.080	.077	.074	.072	.070	.069	.068	.067	.065	.065	.065	.064	.064
1.7	.169	.116	.094	.082	.075	.070	.065	.064	.062	.060	.059	.057	.056	.055	.055	.054	.054	.053
1.8	.161	.107	.085	.073	.066	.061	.057	.055	.053	.051	.050	.049	.048	.046	.046	.045	.045	.044
1.9	.154	.099	.077	.065	.058	.053	.050	.047	.045	.043	.042	.041	.040	.038	.038	.038	.037	.037
1.1 1.2 1.3 1.4 1.5 1.6 1.7 1.8 1.9	.235 .221 .209 .197 .187 .178 .169 .161 .154	.193 .177 .162 .148 .136 .125 .116 .107 .099	.176 .158 .142 .128 .115 .104 .094 .085 .077	.167 .148 .132 .117 .104 .092 .082 .073 .065	.162 .142 .125 .110 .097 .085 .075 .066 .058	.157 .138 .121 .106 .092 .080 .070 .061 .053	.154 .135 .117 .102 .089 .077 .065 .057 .050	.152 .132 .115 .100 .086 .074 .064 .055 .047	.150 .130 .113 .098 .084 .072 .062 .053 .045	.149 .129 .111 .096 .082 .070 .060 .051 .043	.147 .128 .110 .095 .081 .069 .059 .050 .042	.146 .127 .109 .093 .080 .068 .057 .049 .041	.146 .126 .108 .092 .079 .067 .056 .048 .040	.144 .124 .107 .091 .077 .065 .055 .046 .038	.144 .124 .107 .091 .077 .065 .055 .046 .038	.144 .124 .106 .090 .077 .065 .054 .045 .038	.143 .123 .105 .090 .076 .064 .054 .045 .037	.1 .1 .0 .0 .0 .0 .0

MATH 450: Mathematical statistics

t density curve

Area to the right of t

() Q (*

Table A.5 Critical Values for t Distributions

α										
v	.10	.05	.025	.01	.005	.001	.0005			
1	3.078	6.314	12.706	31.821	63.657	318.31	636.62			
2	1.886	2.920	4.303	6.965	9.925	22.326	31.598			
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924			
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610			
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869			
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959			
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408			
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041			
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781			
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587			
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437			
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318			
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221			
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140			
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073			
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015			
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965			

MATH 450: Mathematical statistics

Let \bar{x} and s be the sample mean and sample standard deviation computed from the results of a random sample from a normal population with mean μ . Then a 100(1 - α)% confidence interval for μ , the one-sample t CI, is

$$\left(\overline{x} - t_{\alpha/2,n-1} \cdot \frac{s}{\sqrt{n}}, \overline{x} + t_{\alpha/2,n-1} \cdot \frac{s}{\sqrt{n}}\right)$$
(8.15)

or, more compactly, $\overline{x} \pm t_{\alpha/2,n-1} \cdot s/\sqrt{n}$. An upper confidence bound for μ is

$$\overline{x} + t_{\alpha,n-1} \cdot \frac{s}{\sqrt{n}}$$

and replacing + by – in this latter expression gives a lower confidence bound for μ ; both have confidence level $100(1 - \alpha)\%$.

・ 同 ト ・ ヨ ト ・ ヨ ト

Example

Here is a sample of ACT scores for students taking college freshman calculus:

24.00	28.00	27.75	27.00	24.25	23.50	26.25
24.00	25.00	30.00	23.25	26.25	21.50	26.00
28.00	24.50	22.50	28.25	21.25	19.75	

Assume that ACT scores are normally distributed, calculate a two-sided 95% confidence interval for the population mean.

Table A.5 Critical Values for t Distributions

α										
v	.10	.05	.025	.01	.005	.001	.0005			
1	3.078	6.314	12.706	31.821	63.657	318.31	636.62			
2	1.886	2.920	4.303	6.965	9.925	22.326	31.598			
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924			
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610			
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869			
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959			
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408			
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041			
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781			
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587			
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437			
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318			
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221			
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140			
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073			
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015			
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965			

MATH 450: Mathematical statistics