MATH 450: Mathematical statistics

Oct 22nd, 2020

Lecture 16: Confidence intervals for standard deviation

MATH 450: Mathematical statistics

Week 2 · · · · •	Chapter 6: Statistics and Sampling Distributions
Week 4 · · · · ·	Chapter 7: Point Estimation
Week 7 · · · · ·	Chapter 8: Confidence Intervals
Week 10 · · · · •	Chapter 9: Test of Hypothesis
Week 11 · · · · ·	Chapter 10: Two-sample inference
Week 13 · · · · ·	Regression

<>> ≥ > < ≥ >

æ

8.1 Basic properties of confidence intervals (CIs)

- Interpreting Cls
- General principles to derive CI
- 8.2 Large-sample confidence intervals for a population mean
 - Using the Central Limit Theorem to derive CIs
- 8.3 Intervals based on normal distribution
 - Using Student's t-distribution
- 8.4 CIs for standard deviation

Confidence intervals for a population mean

- \bullet Section 8.1: Normal distribution with known σ
 - Normal distribution
 - σ is known
- Section 8.2: Large-sample confidence intervals
 - Normal distribution
 - ightarrow use Central Limit Theorem ightarrow needs n>30
 - σ is known
 - \rightarrow replace σ by $s \rightarrow$ needs n > 40
- Section 8.3: Intervals based on normal distributions
 - Normal distribution
 - σ is known
 - \rightarrow Introducing *t*-distribution

8.1: Normal distribution with known σ

æ

< 同 > < 三 > < 三 > -

8.1: Normal distribution with known σ

- Assumptions:
 - Normal distribution
 - σ is known
- 95% confidence interval If after observing X₁ = x₁, X₂ = x₂,..., X_n = x_n, we compute the observed sample mean x̄. Then

$$\left(ar{x}-1.96rac{\sigma}{\sqrt{n}},ar{x}+1.96rac{\sigma}{\sqrt{n}}
ight)$$

is a 95% confidence interval of μ

z-critical value

NOTATION z_{α} will denote the value on the measurement axis for which α of the area under the *z* curve lies to the right of z_{α} . (See Figure 4.19.)

For example, $z_{.10}$ captures upper-tail area .10 and $z_{.01}$ captures upper-tail area .01.

Figure 4.19 z_{α} notation illustrated

Since α of the area under the standard normal curve lies to the right of z_{α} , $1 - \alpha$ of the area lies to the left of z_{α} . Thus z_{α} is the $100(1 - \alpha)$ th percentile of the standard normal distribution. By symmetry the area under the standard normal curve to the left of $-z_{\alpha}$ is also α . The z_{α} 's are usually referred to as z critical values. Table 4.1 lists the most useful standard normal percentiles and z_{α} values.

< ロ > < 同 > < 三 > < 三 >

A 100(1 – α)% confidence interval for the mean μ of a normal population when the value of σ is known is given by

$$\left(\bar{x} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right)$$
(8.5)

or, equivalently, by $\overline{x} \pm z_{\alpha/2} \cdot \sigma / \sqrt{n}$.

• • = • • = •

8.2: Large-sample CIs of the population mean

MATH 450: Mathematical statistics

Central Limit Theorem

$$\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}$$

is approximately normal when n > 30

- Moreover, when *n* is sufficiently large $s \approx \sigma$
- Conclusion:

$$rac{ar{X}-\mu}{s/\sqrt{n}}$$

is approximately normal when n is sufficiently large

If n>40, we can ignore the normal assumption and replace σ by s

If after observing $X_1 = x_1$, $X_2 = x_2$,..., $X_n = x_n$ (n > 40), we compute the observed sample mean \bar{x} and sample standard deviation s. Then

$$\left(\bar{x}-z_{\alpha/2}\frac{s}{\sqrt{n}},\bar{x}+z_{\alpha/2}\frac{s}{\sqrt{n}}\right)$$

is a 95% confidence interval of μ

A large-sample upper confidence bound for μ is

$$\mu < \bar{x} + z_{\alpha} \cdot \frac{s}{\sqrt{n}}$$

and a large-sample lower confidence bound for μ is

$$\mu > \bar{x} - z_{\alpha} \cdot \frac{s}{\sqrt{n}}$$

▲ □ ▶ ▲ □ ▶ ▲ □ ▶

8.3: Intervals based on normal distributions

돈 돈 돈

- the population of interest is normal (i.e., X₁,..., X_n constitutes a random sample from a normal distribution N(μ, σ²)).
- σ is unknown
- \rightarrow we want to consider cases when *n* is small.

When \bar{X} is the mean of a random sample of size n from a normal distribution with mean μ , the rv

$$rac{ar{X}-\mu}{S/\sqrt{n}}$$

has the *t* distribution with n - 1 degree of freedom (df).

()

Let \bar{x} and s be the sample mean and sample standard deviation computed from the results of a random sample from a normal population with mean μ . Then a 100(1 - α)% confidence interval for μ , the one-sample t CI, is

$$\left(\overline{x} - t_{\alpha/2,n-1} \cdot \frac{s}{\sqrt{n}}, \overline{x} + t_{\alpha/2,n-1} \cdot \frac{s}{\sqrt{n}}\right)$$
(8.15)

or, more compactly, $\overline{x} \pm t_{\alpha/2,n-1} \cdot s/\sqrt{n}$. An upper confidence bound for μ is

$$\overline{x} + t_{\alpha,n-1} \cdot \frac{s}{\sqrt{n}}$$

and replacing + by – in this latter expression gives a lower confidence bound for μ ; both have confidence level $100(1 - \alpha)\%$.

・ 同 ト ・ ヨ ト ・ ヨ ト

t distributions

Let $t_{\alpha,\nu}$ = the number on the measurement axis for which the area under the *t* curve with *v* df to the right of $t_{\alpha,\nu}$, is α ; $t_{\alpha,\nu}$ is called a *t* critical value.

Figure 8.7 A pictorial definition of $t_{\alpha,\nu}$

Table A.5 Critical Values for t Distributions

				α			
v	.10	.05	.025	.01	.005	.001	.0005
1	3.078	6.314	12.706	31.821	63.657	318.31	636.62
2	1.886	2.920	4.303	6.965	9.925	22.326	31.598
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2,764	3.169	4.144	4.587
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	1.319	1.714	2.069	2.500	2.807	3.485	3.767
24	1.318	1.711	2.064	2.492	2.797	3.467	3.745
						A LOW A LOW	r 3 = r

MATH 450: Mathematical statistics

Prediction intervals

MATH 450: Mathematical statistics

・ロト ・回 ト ・ ヨト ・ ヨト …

2

- We have available a random sample $X_1, X_2, ..., X_n$ from a normal population distribution
- We wish to predict the value of X_{n+1} , a single future observation.

This is a much more difficult problem than the problem of estimating $\boldsymbol{\mu}$

- When $n o \infty$, $ar{X} o \mu$
- Even when we know μ , X_{n+1} is still random

Let X_1, X_2, \ldots, X_n be a sample from a normal population distribution $\mathcal{N}(\mu, \sigma)$ and X_{n+1} be an independent sample from the same distribution.

- Compute $E[\bar{X} X_{n+1}]$ in terms of μ, σ, n
- Compute $Var[\bar{X} X_{n+1}]$ in terms of μ, σ, n
- What is the distribution of $\bar{X} X_{n+1}$?

If σ is known

$$\frac{\bar{X} - X_{n+1}}{\sigma\sqrt{1 + \frac{1}{n}}}$$

follows the standard normal distribution $\mathcal{N}(0,1)$.

回下 くほと くほど

æ

$$T = \frac{\overline{X} - X_{n+1}}{S\sqrt{1 + \frac{1}{n}}} \sim t \text{ distribution with } n - 1 \text{ df}$$

MATH 450: Mathematical statistics

æ

A prediction interval (PI) for a single observation to be selected from a normal population distribution is

$$\overline{x} \pm t_{\alpha/2,n-1} \cdot s \sqrt{1 + \frac{1}{n}} \tag{8.16}$$

The prediction level is $100(1 - \alpha)\%$.

★ ∃ → ★

Example

Let X be the amount of butterfat in pounds produced by a typical cow during a 305-day milk production period between her first and second calves. Assume that the distribution of X is $N(\mu, \sigma^2)$. To estimate μ , a farmer measured the butterfat production for n = 20 cows and obtained the following data:

453 510 327 350 643 499 421 Construct a 90% prediction interval for μ .

Section 6.4: Distributions based on a normal random sample

- The Chi-squared distribution
- The t distribution
- The F Distribution

Chi-squared distribution

The pdf of a Chi-squared distribution with degree of freedom $\nu,$ denoted by $\chi^2_{\nu},$ is

$$f(x) = \begin{cases} \frac{1}{2^{1/2} \Gamma(\nu/2)} x^{(\nu/2)-1} e^{-x/2} & x > 0\\ 0 & x \le 0 \end{cases}$$

MATH 450: Mathematical statistics

Proposition

If Z has standard normal distribution $\mathcal{Z}(0,1)$ and $X = Z^2$, then X has Chi-squared distribution with 1 degree of freedom, i.e. $X \sim \chi_1^2$ distribution.

Proposition

If $X_1 \sim \chi^2_{
u_1}$, $X_2 \sim \chi^2_{
u_2}$ and they are independent, then

$$X_1 + X_2 \sim \chi^2_{\nu_1 + \nu_2}$$

MATH 450: Mathematical statistics

Proposition

If Z_1, Z_2, \ldots, Z_n are independent and each has the standard normal distribution, then

$$Z_1^2 + Z_2^2 + \ldots + Z_n^2 \sim \chi_n^2$$

If X_1, X_2, \ldots, X_n is a random sample from the normal distribution $\mathcal{N}(\mu, \sigma^2)$, then

$$(n-1)\frac{S^2}{\sigma^2} \sim \chi^2_{n-1}$$

4 3 4 3 4

Let Z be a standard normal rv and let X be a χ^2_{ν} rv independent of Z. Then the t distribution with degrees of freedom ν is defined to be the distribution of the ratio

$$T = \frac{Z}{\sqrt{X/\nu}}$$

When \bar{X} is the mean of a random sample of size n from a normal distribution with mean μ , the rv

$$\frac{\bar{X} - \mu}{S/\sqrt{n}}$$

has the *t* distribution with n - 1 degree of freedom (df). Hint:

$$T = \frac{Z}{\sqrt{X/\nu}} \qquad (n-1)\frac{S^2}{\sigma^2} \sim \chi^2_{n-1}$$

and

$$\frac{\bar{X}-\mu}{S/\sqrt{n}} = \frac{\bar{X}-\mu}{\sigma/\sqrt{n}} \cdot \frac{1}{\sqrt{(n-1)\frac{S^2}{\sigma^2}/(n-1)}}$$

A B M A B M

Cls for variance and standard deviation

MATH 450: Mathematical statistics

æ

If X_1, X_2, \ldots, X_n is a random sample from the normal distribution $\mathcal{N}(\mu, \sigma^2)$, then

$$(n-1)\frac{S^2}{\sigma^2} \sim \chi^2_{n-1}$$

4 3 4 3 4

Important: Chi-squared distribution are not symmetric

MATH 450: Mathematical statistics

3 x 3

Cls for standard deviation

We have

$$P\left(\chi_{1-\alpha/2,n-1}^{2} < \frac{(n-1)S^{2}}{\sigma^{2}} < \chi_{\alpha/2,n-1}^{2}\right) = 1 - \alpha$$

Play around with these inequalities:

$$\frac{(n-1)S^2}{\chi^2_{\alpha/2,n-1}} < \sigma^2 < \frac{(n-1)S^2}{\chi^2_{1-\alpha/2,n-1}}$$

MATH 450: Mathematical statistics

- ▲ 문 ► ▲ 문 ►

A 100 $(1 - \alpha)$ % confidence interval for the variance σ^2 of a normal population has lower limit

$$(n-1)s^2/\chi^2_{\alpha/2,n-1}$$

and upper limit

$$(n-1)s^2/\chi^2_{1-\alpha/2,n-1}$$

A confidence interval for σ has lower and upper limits that are the square roots of the corresponding limits in the interval for σ^2 .

伺下 イヨト イヨト

Practice problems

MATH 450: Mathematical statistics

< ロ > < 回 > < 回 > < 回 >

포 🛌 포

Here are the alcohol percentages for a sample of 16 beers:

4.68	4.13	4.80	4.63	5.08	5.79	6.29	6.79
4.93	4.25	5.70	4.74	5.88	6.77	6.04	4.95

(a) Assume the distribution is normal, construct the 95% confidence interval for the population mean.

Table A.5 Critical Values for t Distributions

				α			
v	.10	.05	.025	.01	.005	.001	.0005
1	3.078	6.314	12.706	31.821	63.657	318.31	636.62
2	1.886	2.920	4.303	6.965	9.925	22.326	31.598
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2,764	3.169	4.144	4.587
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	1.319	1.714	2.069	2.500	2.807	3.485	3.767
24	1.318	1.711	2.064	2.492	2.797	3.467	3.745
						A LOW A LOW	r 3 = r

MATH 450: Mathematical statistics

Here are the alcohol percentages for a sample of 16 beers:

4.68	4.13	4.80	4.63	5.08	5.79	6.29	6.79
4.93	4.25	5.70	4.74	5.88	6.77	6.04	4.95

(b) Assume the distribution is normal, construct the 95% lower confidence bound for the population mean.

Here are the alcohol percentages for a sample of 16 beers:

4.68	4.13	4.80	4.63	5.08	5.79	6.29	6.79
4.93	4.25	5.70	4.74	5.88	6.77	6.04	4.95

(b) Assume that another beer is sampled from the same distribution, construct the 95% prediction interval for the alcohol percentages of that beer.

Suppose that against a certain opponent, the number of points a basketball team scores is normally distributed with unknown mean μ and unknown variance σ^2 . Suppose that over the course of the last 10 games, the team scored the following points:

 $59, \ \ 62, \ \ 59, \ \ 74, \ \ 70, \ \ 61, \ \ 62, \ \ 66, \ \ 62, \ \ 75$

- Construct a 95% confidence interval for μ .
- Now suppose that you learn that σ² = 25. Construct a 95% confidence interval for μ. How does this compare to the interval in (a)?

A study of the ability of individuals to walk in a straight line reported the accompanying data on cadence (strides per second) for a sample of n = 20 randomly selected healthy men. Assuming that the distribution is normal:

- Calculate a 95% confidence interval for population mean cadence
- Calculate and interpret a 95% prediction interval for the cadence of a single individual randomly selected from this population.