MATH 450: Mathematical statistics

November 10th, 2020

Lecture 19: Tests about a population mean

Overview

Week 2	Chapter 6: Statistics and Sampling Distributions
Week 4	Chapter 7: Point Estimation
Week 7	Chapter 8: Confidence Intervals
Week 10	Chapter 9: Tests of Hypotheses
Week 12	Chapter 10: Two-sample testing
Week 14	Regression

Overview

9.1 Hypotheses and test procedures

- test procedures
- errors in hypothesis testing
- significance level
9.2 Tests about a population mean
9.4 P-values
9.3 Tests concerning a population proportion
9.5 Selecting a test procedure

Hypothesis testing

Hypothesis testing

In any hypothesis-testing problem, there are two contradictory hypotheses under consideration

- The null hypothesis, denoted by H_{0}, is the claim that is initially assumed to be true
- The alternative hypothesis, denoted by H_{a}, is the assertion that is contradictory to H_{0}.

Implicit rules (of this chapter)

- H_{0} will always be stated as an equality claim.
- If θ denotes the parameter of interest, the null hypothesis will have the form

$$
H_{0}: \theta=\theta_{0}
$$

- θ_{0} is a specified number called the null value
- The alternative hypothesis will be either:
- $H_{a}: \theta>\theta_{0}$
- $H_{a}: \theta<\theta_{0}$
- $H_{a}: \theta \neq \theta_{0}$

A test procedure is specified by the following:

- A test statistic T : a function of the sample data on which the decision (reject H_{0} or do not reject H_{0}) is to be based
- A rejection region \mathcal{R} : the set of all test statistic values for which H_{0} will be rejected

The null hypothesis will then be rejected if and only if the observed or computed test statistic value falls in the rejection region, i.e., $T \in \mathcal{R}$

- A type I error consists of rejecting the null hypothesis H_{0} when it is true
- A type II error involves not rejecting H_{0} when H_{0} is false.

Example 2: Type I error

- It is believed that drying times of an additive follows $\mathcal{N}\left(\mu, 9^{2}\right)$.
- Test of hypotheses:

$$
\begin{aligned}
& H_{0}: \mu=75 \\
& H_{a}: \mu<75
\end{aligned}
$$

- $n=25$. Rule: If $\bar{x} \leq 72$, reject H_{0}.
- Question: What is the probability of type I error?

$$
\begin{aligned}
\alpha & =P[\text { Type I error }] \\
& =P\left[H_{0} \text { is rejected while it is true }\right] \\
& =P[\bar{X} \leq 72 \text { while } \mu=75] \\
& =P\left[\bar{X} \leq 72 \text { while } \bar{X} \sim \mathcal{N}\left(75,1.8^{2}\right)\right]=0.0475
\end{aligned}
$$

Example 2: Type II error

- It is believed that drying times of an additive follows $\mathcal{N}\left(\mu, 9^{2}\right)$.
- Test of hypotheses:

$$
\begin{aligned}
& H_{0}: \mu=75 \\
& H_{a}: \mu<75
\end{aligned}
$$

- Experimental data is to consist of drying times from $n=25$ test specimens: $X_{1}, X_{2}, \ldots, X_{25}$.
- New rule:
- Compute \bar{x}
- If $\bar{x} \leq 72$, reject H_{0}.
- Question: What are $\beta(70)$?

z			.00	.01	.02	.03	.04	.05	.06	.07
.08	.09									
0.0	.5000	.5040	.5080	.5120	.5160	.5199	.5239	.5279	.5319	.5359
0.1	.5398	.5438	.5478	.5517	.5557	.5596	.5636	.5675	.5714	.5753
0.2	.5793	.5832	.5871	.5910	.5948	.5987	.6026	.6064	.6103	.6141
0.3	.6179	.6217	.6255	.6293	.6331	.6368	.6406	.6443	.6480	.6517
0.4	.6554	.6591	.6628	.6664	.6700	.6736	.6772	.6808	.6844	.6879
0.5	.6915	.6950	.6985	.7019	.7054	.7088	.7123	.7157	.7190	.7224
0.6	.7257	.7291	.7324	.7357	.7389	.7422	.7454	.7486	.7517	.7549
0.7	.7580	.7611	.7642	.7673	.7704	.7734	.7764	.7794	.7823	.7852
0.8	.7881	.7910	.7939	.7967	.7995	.8023	.8051	.8078	.8106	.8133
0.9	.8159	.8186	.8212	.8238	.8264	.8289	.8315	.8340	.8365	.8389
1.0	.8413	.8438	.8461	.8485	.8508	.8531	.8554	.8577	.8599	.8621
1.1	.8643	.8665	.8686	.8708	.8729	.8749	.8770	.8790	.8810	.8830
1.2	.8849	.8869	.8888	.8907	.8925	.8944	.8962	.8980	.8997	.9015
1.3	.032	.9049	.9066	.9082	.9099	.9115	.9131	.9147	.9162	.9177
1.4	.9192	.9207	.9222	.9236	.9251	.9265	.9278	.9292	.9306	.9319
1.5	.9332	.9345	.9357	.9370	.9382	.9394	.9406	.9418	.9429	.9441
1.6	.9452	.9463	.9474	.9484	.9495	.9505	.9515	.9525	.9535	.9545
1.7	.9554	.9564	.9573	.9582	.9591	.9599	.9608	.9616	.9625	.9633
1.8	.9641	.9649	.9656	.9664	.9671	.9678	.9686	.9693	.9699	.9706
1.9	.9713	.9719	.9726	.9732	.9738	.9744	.9750	.9756	.9761	.9767
2.0	.9772	.9778	.9783	.9788	.9793	.9798	.9803	.9808	.9812	.9817
2.1	.9821	.9826	.9830	.9834	.9838	.9842	.9846	.9850	.9854	.9857
2.2	.9861	.9864	.9868	.871	.9875	.9878	.9881	.9884	.9887	.9890
2.3	.893	.9896	.9898	.9901	.9904	.9906	.9909	.9911	.9913	.9916
2.4	.9918	.9920	.9922	.9925	.9927	.9929	.9931	.9932	.9934	.9936
2.5	.9938	.9940	.9941	.9943	.9945	.9946	.9948	.9949	.9951	.9952
2.6	.9953	.9955	.9956	.9957	.9959	.9960	.9961	.9962	.9963	.9964
2.7	.9965	.9966	.9967	.9968	.9969	.9970	.9971	.9972	.9973	.9974
2.8	.9974	.9975	.9976	.9977	.9977	.9978	.9979	.9979	.9980	.9981
2.9	.9981	.9982	.9982	.9983	.9984	.9984	.9985	.9985	.9986	.9986
3.0	.9987	.9987	.9987	.9988	.9988	.9989	.9989	.9989	.9990	.9990
3.1	.999	.9991	.9991	.991	.9992	.9992	.9992	.9992	.9993	.9993
3.2	.9993	.9993	.9994	.9994	.9994	.9994	.9994	.9995	.9995	.9995
3.3	.9995	.9995	.9995	.9996	.9996	.9996	.9996	.9996	.9996	.9997

MATH 450: Mathematical statistics

- Test of hypotheses:

$$
\begin{aligned}
& H_{0}: \mu=75 \\
& H_{a}: \mu<75
\end{aligned}
$$

- $n=25$. Rule: If $\bar{x} \leq 72$, reject H_{0}.
$\beta(70)=P$ [Type II error when $\mu=70$]
$=P\left[H_{0}\right.$ is not rejected while it is false because $\left.\mu=70\right]$
$=P[\bar{X}>72$ while $\mu=70]$
$=P\left[\bar{X}>72\right.$ while $\left.\bar{X} \sim \mathcal{N}\left(70,1.8^{2}\right)\right]=0.1335$

Example 2b

- Test of hypotheses:

$$
\begin{aligned}
& H_{0}: \mu=75 \\
& H_{a}: \mu<75
\end{aligned}
$$

- $n=25$. New rule: If $\bar{x} \leq c$, reject H_{0}.
- Find the value of c to make the probability of making Type I error equal to 0.1

Rejection region

$$
\begin{aligned}
\alpha & =P[\text { Type I error }] \\
& =P\left[H_{0} \text { is rejected while it is true }\right] \\
& =P\left[\bar{X} \leq c \text { while } \bar{X} \sim \mathcal{N}\left(75,1.8^{2}\right)\right] \\
& =P\left[\frac{\bar{X}-75}{1.8} \leq \frac{c-75}{1.8}\right]
\end{aligned}
$$

- Rejection rule: $\bar{x} \leq 75-1.8 z_{\alpha}$
- To make it simpler, define $z=(\bar{x}-75) /(1.8)$, then the rule is

$$
z \leq-z_{\alpha}
$$

Example 2c

- If we want to test

$$
\begin{aligned}
& H_{0}: \mu=75 \\
& H_{a}: \mu \neq 75
\end{aligned}
$$

- $n=25$. Rule: If

$$
\bar{x} \leq a \quad \text { or } \quad \bar{x} \geq b
$$

reject H_{0}.

- Find the value of a, b to make $\alpha=0.1$

Proposition
Suppose an experiment and a sample size are fixed and a test statistic is chosen. Then decreasing the size of the rejection region to obtain a smaller value of α results in a larger value of β for any particular parameter value consistent with H_{a}.

The approach adhered to by most statistical practitioners is

- specify the largest value of α that can be tolerated
- find a rejection region having that value of α rather than anything smaller
- α : the significance level of the test
- the corresponding test procedure is called a level α test

Hypothesis testing for one parameter

(1) Identify the parameter of interest
(2) Determine the null value and state the null hypothesis
(3) State the appropriate alternative hypothesis
(9) Give the formula for the test statistic
(5) State the rejection region for the selected significance level α
(0) Compute statistic value from data
((Decide whether H_{0} should be rejected and state this conclusion in the problem context

Normal population with known σ

- Null hypothesis

$$
H_{0}: \mu=\mu_{0}
$$

- The alternative hypothesis will be either:
- $H_{a}: \mu>\mu_{0}$
- $H_{a}: \mu<\mu_{0}$
- $H_{a}: \mu \neq \mu_{0}$

Normal population with known σ

Null hypothesis: $\mu=\mu_{0}$
Test statistic:

$$
Z=\frac{\bar{X}-\mu_{0}}{\sigma / \sqrt{n}}
$$

Alternative Hypothesis

$H_{\mathrm{a}}: \mu>\mu_{0}$
$H_{\mathrm{a}}: \mu<\mu_{0}$
$H_{\mathrm{a}}: \mu \neq \mu_{0}$

Rejection Region for Level α Test
$z \geq z_{\alpha}$ (upper-tailed test)
$z \leq-z_{\alpha}$ (lower-tailed test)
either $z \geq z_{\alpha / 2}$ or $z \leq-z_{\alpha / 2}$ (two-tailed test)

General rule

z curve (probability distribution of test statistic Z when H_{0} is true)

Example

Problem

A manufacturer of sprinkler systems used for fire protection in office buildings claims that the true average system-activation temperature is $130^{\circ} \mathrm{F}$. A sample of $n=9$ systems, when tested, yields a sample average activation temperature of $131.08^{\circ} \mathrm{F}$.

If the distribution of activation times is normal with standard deviation $1.5^{\circ} \mathrm{F}$, does the data contradict the manufacturer's claim at significance level $\alpha=0.01$?

- Parameter of interest: $\mu=$ true average activation temperature
- Hypotheses

$$
\begin{aligned}
& H_{0}: \mu=130 \\
& H_{a}: \mu \neq 130
\end{aligned}
$$

- Test statistic:

$$
z=\frac{\bar{x}-130}{1.5 / \sqrt{n}}
$$

- Rejection region: either $z \leq-z_{0.005}$ or $z \geq z_{0.005}=2.58$
- Substituting $\bar{x}=131.08, n=25 \rightarrow z=2.16$.
- Note that $-2.58<2.16<2.58$. We fail to reject H_{0} at significance level 0.01 .
- The data does not give strong support to the claim that the true average differs from the design value.

