MATH 450: Mathematical statistics

December 1st, 2019

Lecture 23: The two-sample *t*-test

MATH 450: Mathematical statistics

Week 2 · · · · •	Chapter 6: Statistics and Sampling Distributions				
Week 4 · · · · ·	Chapter 7: Point Estimation				
Week 7 · · · · ·	Chapter 8: Confidence Intervals				
Week 10 · · · · •	Chapter 9: Tests of Hypotheses				
Week 12 · · · · •	Chapter 10: Two-sample testing				

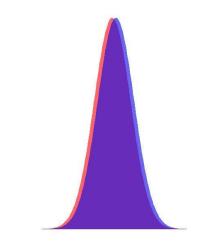
æ

(* * 문 * * 문 *)

10.1 Difference between two population means

- z-test
- confidence intervals
- 10.2 The two-sample *t*-test and confidence interval
- 10.3 Analysis of paired data

Difference between two population means



- Testing:
 - $H_0: \mu_1 = \mu_2$ $H_a: \mu_1 > \mu_2$
- Works well, even if $|\mu_1 \mu_2| << \sigma_1, \sigma_2$

Assumption

- X₁, X₂,..., X_m is a random sample from a population with mean μ₁ and variance σ₁².
- Y₁, Y₂,..., Y_n is a random sample from a population with mean μ₂ and variance σ₂².
- The X and Y samples are independent of each other.

Proposition

The expected value of $\overline{X} - \overline{Y}$ is $\mu_1 - \mu_2$, so $\overline{X} - \overline{Y}$ is an unbiased estimator of $\mu_1 - \mu_2$. The standard deviation of $\overline{X} - \overline{Y}$ is

$$\sigma_{\overline{X}-\overline{Y}} = \sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}$$

MATH 450: Mathematical statistics

When both population distributions are normal, standardizing $\overline{X} - \overline{Y}$ gives a random variable Z with a standard normal distribution. Since the area under the z curve between $-z_{\alpha/2}$ and $z_{\alpha/2}$ is $1 - \alpha$, it follows that

$$P\left(-z_{\alpha/2} < \frac{\overline{X} - \overline{Y} - (\mu_1 - \mu_2)}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}} < z_{\alpha/2}\right) = 1 - \alpha$$

Manipulation of the inequalities inside the parentheses to isolate $\mu_1 - \mu_2$ yields the equivalent probability statement

$$P\left(\overline{X} - \overline{Y} - z_{\alpha/2}\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}} < \mu_1 - \mu_2 < \overline{X} - \overline{Y} + z_{\alpha/2}\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}\right) = 1 - \alpha$$

・ 同 ト ・ ヨ ト ・ ヨ ト

э

Problem

Assume that we want to test the null hypothesis $H_0: \mu_1 - \mu_2 = \Delta_0$ against each of the following alternative hypothesis

(a)
$$H_a: \mu_1 - \mu_2 > \Delta_0$$

(b) $H_a: \mu_1 - \mu_2 < \Delta_0$
(c) $H_a: \mu_1 - \mu_2 \neq \Delta_0$

by using the test statistic:

$$z = rac{(ar{x} - ar{y}) - (\mu_1 - \mu_2)}{\sqrt{rac{\sigma_1^2}{m} + rac{\sigma_2^2}{n}}}.$$

What is the rejection region in each case (a), (b) and (c)?

Proposition

Null hypothesis: $H_0: \mu_1 - \mu_2 = \Delta_0$ Test statistic value: $z = \frac{\overline{x} - \overline{y} - \Delta_0}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}}$

Alternative Hypothesis

Rejection Region for Level a Test

- $\begin{array}{l} H_{\rm a}: \, \mu_1 \mu_2 > \Delta_0 \\ H_{\rm a}: \, \mu_1 \mu_2 < \Delta_0 \\ H_{\rm a}: \, \mu_1 \mu_2 \neq \Delta_0 \end{array}$
- $z \ge z_{\alpha} \text{ (upper-tailed test)}$ $z \le -z_{\alpha} \text{ (lower-tailed test)}$ $either <math>z \ge z_{\alpha/2} \text{ or } z \le -z_{\alpha/2} \text{ (two-tailed test)}$

Each student in a class of 21 responded to a questionnaire that requested their GPA and the number of hours each week that they studied. For those who studied less than 10 h/week the GPAs were

2.80, 3.40, 4.00, 3.60, 2.00, 3.00, 3.47, 2.80, 2.60, 2.00

and for those who studied at least 10 h/week the GPAs were

3.00, 3.00, 2.20, 2.40, 4.00, 2.96, 3.41, 3.27, 3.80, 3.10, 2.50

Assume that the distribution of GPA for each group is normal and both distributions have standard deviation $\sigma_1 = \sigma_2 = 0.6$. Treating the two samples as random, is there evidence that true average GPA differs for the two study times? Carry out a test of significance at level .05.

Solution

- The parameter of interest is µ₁ − µ₂, the difference between true mean GPA for the < 10 (conceptual) population and true mean GPA for the ≥10 population.
- 2. The null hypothesis is $H_0: \mu_1 \mu_2 = 0$.
- 3. The alternative hypothesis is H_a: µ₁ − µ₂ ≠ 0; if H_a is true then µ₁ and µ₂ are different. Although it would seem unlikely that µ₁ − µ₂ > 0 (those with low study hours have higher mean GPA) we will allow it as a possibility and do a two-tailed test.
- 4. With $\Delta_0 = 0$, the test statistic value is

$$z = \frac{\overline{x} - \overline{y}}{\sqrt{\frac{\sigma_1^2}{m} + \frac{\sigma_2^2}{n}}}$$

5. The inequality in H_a implies that the test is two-tailed. For $\alpha = .05$, $\alpha/2 = .025$ and $z_{\alpha/2} = z_{.025} = 1.96$. H_0 will be rejected if $z \ge 1.96$ or $z \le -1.96$.

・ロト ・ 一 ト ・ ヨ ト ・ 日 ト

э

Solution

6. Substituting m = 10, $\bar{x} = 2.97$, $\sigma_1^2 = .36$, n = 11, $\bar{y} = 3.06$, and $\sigma_2^2 = .36$ into the formula for z yields

$$z = \frac{2.97 - 3.06}{\sqrt{\frac{.36}{10} + \frac{.36}{11}}} = \frac{-.09}{.262} = -.34$$

That is, the value of $\overline{x} - \overline{y}$ is only one-third of a standard deviation below what would be expected when H_0 is true.

 Because the value of z is not even close to the rejection region, there is no reason to reject the null hypothesis. This test shows no evidence of any relationship between study hours and GPA.

< ロ > < 同 > < 回 > < 回 >

Large-sample tests/confidence intervals

Central Limit Theorem: X
 and Y
 are approximately normal when n > 30 → so is X

$$\frac{(\bar{X}-\bar{Y})-(\mu_1-\mu_2)}{\sqrt{\frac{\sigma_1^2}{m}+\frac{\sigma_2^2}{n}}}$$

is approximately standard normal

- When *n* is sufficiently large $S_1 \approx \sigma_1$ and $S_2 \approx \sigma_2$
- Conclusion:

$$\frac{(\bar{X} - \bar{Y}) - (\mu_1 - \mu_2)}{\sqrt{\frac{S_1^2}{m} + \frac{S_2^2}{n}}}$$

is approximately standard normal when *n* is sufficiently large If m, n > 40, we can ignore the normal assumption and replace σ by *S*

Proposition

Use of the test statistic value

$$z = \frac{\overline{x} - \overline{y} - \Delta_0}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}}$$

along with the previously stated upper-, lower-, and two-tailed rejection regions based on z critical values gives large-sample tests whose significance levels are approximately α . These tests are usually appropriate if both m > 40 and n > 40. A P-value is computed exactly as it was for our earlier z tests.

Proposition

Provided that m and n are both large, a CI for $\mu_1 - \mu_2$ with a confidence level of approximately $100(1 - \alpha)\%$ is

$$ar{x} - ar{y} \pm z_{lpha/2} \sqrt{rac{s_1^2}{m} + rac{s_2^2}{n}}$$

where -gives the lower limit and + the upper limit of the interval. An upper or lower confidence bound can also be calculated by retaining the appropriate sign and replacing $z_{\alpha/2}$ by z_{α} .

Example

Let μ_1 and μ_2 denote true average tread lives for two competing brands of size P205/65R15 radial tires.

(a) Test

 $H_0: \mu_1 = \mu_2$ $H_a: \mu_1 \neq \mu_2$

at level 0.05 using the following data: m = 45, $\bar{x} = 42500$, $s_1 = 2200$, n = 45, $\bar{y} = 40400$, and $s_2 = 1900$. (b) Construct a 95% Cl for $\mu_1 - \mu_2$.

The two-sample t-test and confidence interval

MATH 450: Mathematical statistics

э

Remember Chapter 8?

- Section 8.1
 - Normal distribution
 - σ is known
- Section 8.2
 - Normal distribution
 - \rightarrow Using Central Limit Theorem \rightarrow needs n>30
 - σ is known
 - \rightarrow needs n > 40
- Section 8.3
 - Normal distribution
 - σ is known
 - *n* is small
 - \rightarrow Introducing *t*-distribution

• For one-sample inferences:

$$rac{ar{X}-\mu}{S/\sqrt{n}}\sim t_{n-1}$$

• For two-sample inferences:

$$rac{(ar{X}-ar{Y})-(\mu_1-\mu_2)}{\sqrt{rac{S_1^2}{m}+rac{S_2^2}{n}}}\sim t_
u$$

where ν is some appropriate degree of freedom (which depends on *m* and *n*).

2-sample t-test: degree of freedom

THEOREM

When the population distributions are both normal, the standardized variable

$$T = \frac{\overline{X - Y - (\mu_1 - \mu_2)}}{\sqrt{\frac{S_1^2}{m} + \frac{S_2^2}{n}}}$$
(10.2)

has approximately a t distribution with df v estimated from the data by

$$v = \frac{\left(\frac{s_1^2}{m} + \frac{s_2^2}{n}\right)^2}{\left(\frac{s_1^2/m}{m-1} + \frac{(s_2^2/n)^2}{n-1}\right)} = \frac{\left[(se_1)^2 + (se_2)^2\right]^2}{\left(\frac{se_1}{m-1} + \frac{(se_2)^4}{n-1}\right)^2}$$

where

$$se_1 = \frac{s_1}{\sqrt{m}}$$
 $se_2 = \frac{s_2}{\sqrt{n}}$

(round v down to the nearest integer).

・ロト ・回ト ・ヨト ・ヨト

э

The two-sample *t* confidence interval for $\mu_1 - \mu_2$ with confidence level $100(1 - \alpha)\%$ is then

$$\overline{x} - \overline{y} \pm t_{\alpha/2, \nu} \sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}$$

A one-sided confidence bound can be calculated as described earlier.

伺 ト イヨト イヨト

The **two-sample** *t* test for testing H_0 : $\mu_1 - \mu_2 = \Delta_0$ is as follows:

Test statistic value:
$$t = \frac{\overline{x} - \overline{y} - \Delta_0}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}}$$

Alternative Hypothesis Rejection Region for Approximate Level a Test

H_{a} : $\mu_1 - \mu_2 > \Delta_0$	$t \ge t_{\alpha,\nu}$ (upper-tailed test)
$H_{ m a}:\mu_1-\mu_2<\Delta_0$	$t \leq -t_{\alpha,\nu}$ (lower-tailed test)
$H_{\mathrm{a}}: \mu_1 - \mu_2 e \Delta_0$	either $t \ge t_{\alpha/2,\nu}$ or $t \le -t_{\alpha/2,\nu}$ (two-tailed test)

A P-value can be computed as described in Section 9.4 for the one-sample t test.

イロト イボト イヨト イヨト

3

Example

A paper reported the following data on tensile strength (psi) of liner specimens both when a certain fusion process was used and when this process was not used:

No fusion	2748	2700	2655	2822	2511			
	3149	3257	3213	3220	2753			
	m = 10	$\bar{x} = 2902.8$	$s_1 = 277.3$					
Fused	3027	3356	3359	3297	3125	2910	2889	2902
	n = 8	$\bar{y} = 3108.1$	$s_2 = 205.9$					

The authors of the article stated that the fusion process increased the average tensile strength. Carry out a test of hypotheses to see whether the data supports this conclusion (and provide the P-value of the test)

t-table

Table A.5 Critical Values for t Distributions

				α			
ν	.10	.05	.025	.01	.005	.001	.0005
1	3.078	6.314	12.706	31.821	63.657	318.31	636.62
2	1.886	2.920	4.303	6.965	9.925	22.326	31.598
3	1.638	2.353	3.182	4.541	5.841	10.213	12.924
4	1.533	2.132	2.776	3.747	4.604	7.173	8.610
5	1.476	2.015	2.571	3.365	4.032	5.893	6.869
6	1.440	1.943	2.447	3.143	3.707	5.208	5.959
7	1.415	1.895	2.365	2.998	3.499	4.785	5.408
8	1.397	1.860	2.306	2.896	3.355	4.501	5.041
9	1.383	1.833	2.262	2.821	3.250	4.297	4.781
10	1.372	1.812	2.228	2.764	3.169	4.144	4.587
11	1.363	1.796	2.201	2.718	3.106	4.025	4.437
12	1.356	1.782	2.179	2.681	3.055	3.930	4.318
13	1.350	1.771	2.160	2.650	3.012	3.852	4.221
14	1.345	1.761	2.145	2.624	2.977	3.787	4.140
15	1.341	1.753	2.131	2.602	2.947	3.733	4.073
16	1.337	1.746	2.120	2.583	2.921	3.686	4.015
17	1.333	1.740	2.110	2.567	2.898	3.646	3.965
18	1.330	1.734	2.101	2.552	2.878	3.610	3.922
19	1.328	1.729	2.093	2.539	2.861	3.579	3.883
20	1.325	1.725	2.086	2.528	2.845	3.552	3.850
21	1.323	1.721	2.080	2.518	2.831	3.527	3.819
22	1.321	1.717	2.074	2.508	2.819	3.505	3.792
23	1.319	1.714	2.069	2.500	2.807	3.485	3.767
24	1.318	1.711	2.064	2.492	2.797	3.467	3.745

MATH 450: Mathematical statistics

æ

- 1. Let μ_1 be the true average tensile strength of specimens when the no-fusion treatment is used and μ_2 denote the true average tensile strength when the fusion treatment is used.
- **2.** $H_0: \mu_1 \mu_2 = 0$ (no difference in the true average tensile strengths for the two treatments)
- 3. $H_a: \mu_1 \mu_2 < 0$ (true average tensile strength for the no-fusion treatment is less than that for the fusion treatment, so that the investigators' conclusion is correct)

・ロト ・ 一 ・ ・ ー ・ ・ ・ ・ ・ ・ ・

э

Solution

4. The null value is $\Delta_0 = 0$, so the test statistic is

$$t = \frac{\overline{x} - \overline{y}}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}}$$

5. We now compute both the test statistic value and the df for the test:

$$t = \frac{2902.8 - 3108.1}{\sqrt{\frac{277.3^2}{10} + \frac{205.9^2}{8}}} = \frac{-205.3}{113.97} = -1.8$$

Using $s_1^2/m = 7689.529$ and $s_2^2/n = 5299.351$,

$$v = \frac{(7689.529 + 5299.351)^2}{(7689.529)^2} + \frac{(5299.351)^2}{7} = \frac{168,711,004}{10,581,747} = 15.94$$

so the test will be based on 15 df.

伺 とう きょう く うと

The following data summarizes the proportional stress limits for specimens constructed using two different types of wood:

Type of wood	Sample size	Sample mean	Sample sd
Red oak	14	8.48	0.79
Douglas fir	10	6.65	1.28

Assuming that both samples were selected from normal distributions, carry out a test of hypotheses with significance level $\alpha = 0.05$ to decide whether the true average proportional stress limit for red oak joints exceeds that for Douglas fir joints by more than 1 MPa. Provide the P-value of the test.