# MATH 450: Mathematical statistics 

December 3rd, 2019

Lecture 24: The paired t-test

## Overview

| Week $2 \ldots \ldots$ | Chapter 6: Statistics and Sampling <br> Distributions |
| :--- | :--- | :--- |
| Week $4 \ldots \ldots$ | Chapter 7: Point Estimation |
| Week $7 \ldots \ldots$ | Chapter 8: Confidence Intervals |
| Week $10 \ldots \ldots$ | Chapter 9: Tests of Hypotheses |
| Week $12 \ldots \ldots$ | Chapter 10: Two-sample testing |

## Inferences based on two samples

10.1 Difference between two population means

- z-test
- confidence intervals
10.2 The two-sample $t$ test and confidence interval
10.3 Analysis of paired data


## Difference between two population means

- Testing:

$$
\begin{aligned}
& H_{0}: \mu_{1}=\mu_{2} \\
& H_{a}: \mu_{1}>\mu_{2}
\end{aligned}
$$

- Works well, even if
$\left|\mu_{1}-\mu_{2}\right| \ll \sigma_{1}, \sigma_{2}$


## Settings

- Last lecture: independent samples


## Assumption

(1) $X_{1}, X_{2}, \ldots, X_{m}$ is a random sample from a population with mean $\mu_{1}$ and variance $\sigma_{1}^{2}$.
(2) $Y_{1}, Y_{2}, \ldots, Y_{n}$ is a random sample from a population with mean $\mu_{2}$ and variance $\sigma_{2}^{2}$.
(3) The $X$ and $Y$ samples are independent of each other.

- This lecture: paired-sample test


## Independent setting

## Remember Chapter 8?

- Section 8.1
- Normal distribution
- $\sigma$ is known
- Section 8.2
- Normal distribution
$\rightarrow$ Using Central Limit Theorem $\rightarrow$ needs $n>30$
- $\sigma$ is known
$\rightarrow$ needs $n>40$
- Section 8.3
- Normal distribution
- $\sigma$ is known
- $n$ is small
$\rightarrow$ Introducing $t$-distribution


## Properties of $\bar{X}-\bar{Y}$

## Proposition

The expected value of $X-Y$ is $\mu_{1}-\mu_{2}$, so $X-Y$ is an unbiased estimator of $\mu_{1}-\mu_{2}$. The standard deviation of $\bar{X}-\bar{Y}$ is

$$
\sigma_{\bar{X}-\bar{Y}}=\sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}
$$

## Confidence intervals: Normal distributions with known variances

When both population distributions are normal, standardizing $\bar{X}-\bar{Y}$ gives a random variable $Z$ with a standard normal distribution. Since the area under the $z$ curve between $-z_{\alpha / 2}$ and $z_{\alpha / 2}$ is $1-\alpha$, it follows that

$$
P\left(-z_{\alpha / 2}<\frac{\bar{X}-\bar{Y}-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}}<z_{\alpha / 2}\right)=1-\alpha
$$

Manipulation of the inequalities inside the parentheses to isolate $\mu_{1}-\mu_{2}$ yields the equivalent probability statement

$$
P\left(\bar{X}-\bar{Y}-z_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}<\mu_{1}-\mu_{2}<\bar{X}-\bar{Y}+z_{\alpha / 2} \sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}\right)=1-\alpha
$$

Testing the difference between two population means

## Proposition

Null hypothesis: $H_{0}: \mu_{1}-\mu_{2}=\Delta_{0}$
Test statistic value: $z=\frac{\bar{x}-\bar{y}-\Delta_{0}}{\sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}}$

## Alternative Hypothesis

$H_{\mathrm{a}}: \mu_{1}-\mu_{2}>\Delta_{0}$
$H_{\mathrm{a}}: \mu_{1}-\mu_{2}<\Delta_{0}$
$H_{\mathrm{a}}: \mu_{1}-\mu_{2} \neq \Delta_{0}$
$z \geq z_{\alpha}$ (upper-tailed test)
Rejection Region for Level $\alpha$ Test
$z \leq-z_{\alpha}$ (lower-tailed test)
either $z \geq z_{\alpha / 2}$ or $z \leq-z_{\alpha / 2}$ (two-tailed test)

## Large-sample tests/confidence intervals

- Central Limit Theorem: $\bar{X}$ and $\bar{Y}$ are approximately normal when $n>30 \rightarrow$ so is $\bar{X}-\bar{Y}$. Thus

$$
\frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}}}
$$

is approximately standard normal

- When $n$ is sufficiently large $S_{1} \approx \sigma_{1}$ and $S_{2} \approx \sigma_{2}$
- Conclusion:

$$
\frac{(\bar{X}-\bar{Y})-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{S_{1}^{2}}{m}+\frac{S_{2}^{2}}{n}}}
$$

is approximately standard normal when $n$ is sufficiently large
If $m, n>40$, we can ignore the normal assumption and replace $\sigma$ by $S$

## Large-sample Cls

## Proposition

Provided that $m$ and $n$ are both large, a CI for $\mu_{1}-\mu_{2}$ with a confidence level of approximately $100(1-\alpha) \%$ is

$$
\bar{x}-\bar{y} \pm z_{\alpha / 2} \sqrt{\frac{s_{1}^{2}}{m}+\frac{s_{2}^{2}}{n}}
$$

where - gives the lower limit and + the upper limit of the interval. An upper or lower confidence bound can also be calculated by retaining the appropriate sign and replacing $z_{\alpha / 2}$ by $z_{\alpha}$.

## Large-sample tests

## Proposition

Use of the test statistic value

$$
z=\frac{\bar{x}-\bar{y}-\Delta_{0}}{\sqrt{\frac{s_{1}^{2}}{m}+\frac{s_{2}^{2}}{n}}}
$$

along with the previously stated upper-, lower-, and two-tailed rejection regions based on $z$ critical values gives large-sample tests whose significance levels are approximately $\alpha$. These tests are usually appropriate if both $m>40$ and $n>40$. A $P$-value is computed exactly as it was for our earlier $z$ tests.

## 2-sample t-test: degree of freedom

THEOREM When the population distributions are both normal, the standardized variable

$$
\begin{equation*}
T=\frac{X-Y-\left(\mu_{1}-\mu_{2}\right)}{\sqrt{\frac{S_{1}^{2}}{m}+\frac{S_{2}^{2}}{n}}} \tag{10.2}
\end{equation*}
$$

has approximately a $t$ distribution with df $v$ estimated from the data by

$$
v=\frac{\left(\frac{s_{1}^{2}}{m}+\frac{s_{2}^{2}}{n}\right)^{2}}{\frac{\left(s_{1}^{2} / m\right)^{2}}{m-1}+\frac{\left(s_{2}^{2} / n\right)^{2}}{n-1}}=\frac{\left[\left(s e_{1}\right)^{2}+\left(s e_{2}\right)^{2}\right]^{2}}{\frac{\left(s e_{1}\right)^{4}}{m-1}+\frac{\left(s e_{2}\right)^{4}}{n-1}}
$$

where

$$
s e_{1}=\frac{s_{1}}{\sqrt{m}} \quad s e_{2}=\frac{s_{2}}{\sqrt{n}}
$$

(round $v$ down to the nearest integer).

## Cls for difference of the two population means

The two-sample $\boldsymbol{t}$ confidence interval for $\boldsymbol{\mu}_{1}-\boldsymbol{\mu}_{2}$ with confidence level $100(1-\alpha) \%$ is then

$$
\bar{x}-\bar{y} \pm t_{\alpha / 2, v} \sqrt{\frac{s_{1}^{2}}{m}+\frac{s_{2}^{2}}{n}}
$$

A one-sided confidence bound can be calculated as described earlier.

## 2-sample t procedures

The two-sample $\boldsymbol{t}$ test for testing $H_{0}: \mu_{1}-\mu_{2}=\Delta_{0}$ is as follows:

$$
\text { Test statistic value: } t=\frac{\bar{x}-\bar{y}-\Delta_{0}}{\sqrt{\frac{s_{1}^{2}}{m}+\frac{s_{2}^{2}}{n}}}
$$

## Alternative Hypothesis Rejection Region for Approximate Level $\alpha$ Test

$H_{\mathrm{a}}: \mu_{1}-\mu_{2}>\Delta_{0} \quad t \geq t_{\alpha, v}$ (upper-tailed test)
$H_{\mathrm{a}}: \mu_{1}-\mu_{2}<\Delta_{0} \quad t \leq-t_{\alpha, v}$ (lower-tailed test)
$H_{\mathrm{a}}: \mu_{1}-\mu_{2} \neq \Delta_{0} \quad$ either $t \geq t_{\alpha / 2, v}$ or $t \leq-t_{\alpha / 2, v}$ (two-tailed test)
A $P$-value can be computed as described in Section 9.4 for the one-sample $t$ test.

## The paired samples setting

(1) There is only one set of n individuals or experimental objects
(2) Two observations are made on each individual or object

## Example

## Example

Consider two scenarios:
A. Insulin rate is measured on 30 patients before and after a medical treatment.
B. Insulin rate is measured on 30 patients receiving a placebo and 30 other patients receiving a medical treatment.

- In the independent case, we construct the statistics by looking at the distribution of

$$
D=\bar{X}-\bar{Y}
$$

which has

$$
E[\bar{X}-\bar{Y}]=\mu_{1}-\mu_{2}, \quad \operatorname{Var}[\bar{X}-\bar{Y}]=\operatorname{Var}(\bar{X})+\operatorname{Var}(\bar{Y})=\frac{\sigma_{1}^{2}}{m}+\frac{\sigma_{2}^{2}}{n}
$$

- With paired data, the $X$ and $Y$ observations within each pair are not independent, so $\bar{X}$ and $\bar{Y}$ are not independent of each other $\rightarrow$ the computation of the variance is in valid $\rightarrow$ could not use the old formulas
- Because different pairs are independent, the $D_{i}$ 's are independent of each other
- We also have

$$
E[D]=E[X-Y]=E[X]-E[Y]=\mu_{1}-\mu_{2}=\mu_{D}
$$

- Testing about $\mu_{1}-\mu_{2}$ is just the same as testing about $\mu_{D}$
- Idea: to test hypotheses about $\mu_{1}-\mu_{2}$ when data is paired:
(1) form the differences $D_{1}, D_{2}, \ldots, D_{n}$
(2) carry out a one-sample t-test (based on $n-1 \mathrm{df}$ ) on the differences.


## Settings

## Assumption

(1) The data consists of $n$ independently selected pairs of independently normally distributed random variables $\left(X_{1}, Y_{1}\right),\left(X_{2}, Y_{2}\right), \ldots,\left(X_{n}, Y_{n}\right)$ with $E\left(X_{i}\right)=\mu_{1}$ and $E\left(Y_{i}\right)=\mu_{2}$.
(2) Let

$$
D_{1}=X_{1}-Y_{1}, \quad D_{2}=X_{2}-Y_{2}, \ldots, \quad D_{n}=X_{n}-Y_{n}
$$

so the $D_{i}$ 's are the differences within pairs.

## Confidence intervals

- A $t$ confidence interval for for $\mu_{D}=\mu_{1}-\mu_{2}$ can be constructed based on the fact that

$$
T=\frac{\bar{D}-\mu_{D}}{S_{D} / \sqrt{n}}
$$

follows the $t$ distribution with degree of freedom $n-1$.

- The Cl for $\mu_{D}$ is

$$
\bar{d} \pm t_{\alpha / 2, n-1} \frac{s_{D}}{\sqrt{n}}
$$

- A one-sided confidence bound results from retaining the relevant sign and replacing $t_{\alpha / 2, n-1}$ by $t_{\alpha, n-1}$.

THE PAIRED $t$ TEST

Null hypothesis: $H_{0}: \mu_{D}=\Delta_{0}$

Test statistic value: $t=\frac{\bar{d}-\Delta_{0}}{s_{D} / \sqrt{n}}$

## Alternative Hypothesis

$H_{\mathrm{a}}: \mu_{D}>\Delta_{0}$
$H_{\mathrm{a}}: \mu_{D}<\Delta_{0}$
$H_{\mathrm{a}}: \mu_{D} \neq \Delta_{0}$
(where $D=X-Y$ is the difference between the first and second observations within a pair, and $\mu_{D}=\mu_{1}-\mu_{2}$ )
(where $\bar{d}$ and $s_{D}$ are the sample mean and standard deviation, respectively, of the $d_{i}$ 's)

A $P$-value can be calculated as was done for earlier $t$ tests.

## Example

## Example

Consider two scenarios:
A. Insulin rate is measured on 30 patients before and after a medical treatment.
B. Insulin rate is measured on 30 patients receiving a placebo and 30 other patients receiving a medical treatment.
What type of test should be used in each cased: paired or unpaired?

## Example

## Example

Suppose we have a new synthetic material for making soles for shoes. We'd like to compare the new material with leather - using some energetic kids who are willing to wear test shoes and return them after a time for our study. Consider two scenarios:
A. Giving 50 kids synthetic sole shoes and 50 kids leather shoes and then collect them back, comparing the average wear in each group
B. Give each of a random sample of 50 kids one shoe made by the new synthetic materials and one shoe made with leather
What type of test should be used in each cased: paired or unpaired?

## Example

Consider an experiment in which each of 13 workers was provided with both a conventional shovel and a shovel whose blade was perforated with small holes. The following data on stable energy expenditure is provided:

| Worker: | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conventional: | .0011 | .0014 | .0018 | .0022 | .0010 | .0016 | .0028 |
| Perforated: | .0011 | .0010 | .0019 | .0013 | .0011 | .0017 | .0024 |
| Worker: | $:$ |  |  |  |  |  |  |
| Wonventional: | .0020 | .0015 | .0014 | .0023 | .0017 | .0020 |  |
| Conforated: | .0020 | .0013 | .0013 | .0017 | .0015 | .0013 |  |

Calculate a confidence interval at the $95 \%$ confidence level for the true average difference between energy expenditure for the conventional shovel and the perforated shovel (assuming that the differences follow normal distribution).

## Example

Consider an experiment in which each of 13 workers was provided with both a conventional shovel and a shovel whose blade was perforated with small holes. The following data on stable energy expenditure is provided:

| Worker: | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Conventional: | .0011 | .0014 | .0018 | .0022 | .0010 | .0016 | .0028 |
| Perforated: | .0011 | .0010 | .0019 | .0013 | .0011 | .0017 | .0024 |
| Worker: | : |  |  |  |  |  |  |
| Wonventional: | .0020 | .0015 | .0014 | .0023 | .0017 | .0020 |  |
| Confated: | .0020 | .0013 | .0013 | .0017 | .0015 | .0013 |  |
| Perforate |  |  |  |  |  |  |  |

Carry out a test of hypotheses at significance level .05 to see if true average energy expenditure using the conventional shovel exceeds that using the perforated shovel; include a P -value in your analysis.

| $t$ | $v$ | $\mathbf{1}$ | $\mathbf{2}$ | $\mathbf{3}$ | $\mathbf{4}$ | $\mathbf{5}$ | $\mathbf{6}$ | $\mathbf{7}$ | $\mathbf{8}$ | $\mathbf{9}$ | $\mathbf{1 0}$ | $\mathbf{1 1}$ | $\mathbf{1 2}$ | $\mathbf{1 3}$ | $\mathbf{1 4}$ | $\mathbf{1 5}$ | $\mathbf{1 6}$ | $\mathbf{1 7}$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 8}$ |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |  |

## Example

A physician claims that an experimental medication increases an individuals heart rate. Twelve test subjects are randomly selected, and the heart rate of each is measured. The subjects are then injected with the medication and, after 1 hour, the heart rate of each is measured again. The results are show below.

| Before | 72 | 81 | 76 | 74 | 75 | 80 | 68 | 75 | 78 | 76 | 74 | 77 |
| :---: | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| After | 73 | 80 | 79 | 76 | 76 | 80 | 74 | 77 | 75 | 74 | 76 | 78 |

We assume that both samples were selected from normal distributions.
(a) (20 points) Carry out a test of hypotheses with significance level $\alpha=0.05$ to decide whether we should reject the physician's claim. Provide the P -value of the test.
(20 points) Another physician claims that the experimental medication above does change the heart rate. Do we have enough evidence to reject his claim, using the same significance level $\alpha=0.05$ ?

