MATH 450: Mathematical statistics

December 8th, 2020

Lecture 25: Review

Notes

The exam will be on

12/15/2020, Tuesday, 10:30am -12:30pm (note that this is **different** than our usual meeting time) The final exam will follow the same format as the midterm.

- There will a practice exam next lecture (Thursday)
- Please fill out the course evaluation before this Friday

Overview

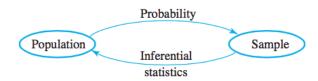
Week 1 · · · · •	Probability reviews
Week 2 · · · · •	Chapter 6: Statistics and Sampling Distributions
Week 4 · · · ·	Chapter 7: Point Estimation
Week 7 · · · ·	Chapter 8: Confidence Intervals
Week 10 · · · · ·	Chapter 9, 10: Test of Hypothesis

Chapter 6: Statistics and Sampling Distributions

Chapter 6

- 6.1 Statistics and their distributions
- 6.2 The distribution of the sample mean
- 6.3 The distribution of a linear combination

Random sample



Definition

The random variables $X_1, X_2, ..., X_n$ are said to form a (simple) random sample of size n if

- \bullet the X_i 's are independent random variables

Section 6.1: Sampling distributions

- lacktriangled If the distribution and the statistic T is simple, try to construct the pmf of the statistic
- ② If the probability density function $f_X(x)$ of X's is known, the
 - ullet try to represent/compute the cumulative distribution (cdf) of T

$$\mathbb{P}[T \leq t]$$

• take the derivative of the function (with respect to t)

Section 6.3: Linear combination of normal random variables

Theorem

Let $X_1, X_2, ..., X_n$ be independent normal random variables (with possibly different means and/or variances). Then

$$T = a_1 X_1 + a_2 X_2 + \ldots + a_n X_n$$

also follows the normal distribution.

Section 6.3: Computations with normal random variables

If X has a normal distribution with mean μ and standard deviation σ , then

$$Z = \frac{X - \mu}{\sigma}$$

has a standard normal distribution. Thus

$$P(a \le X \le b) = P\left(\frac{a - \mu}{\sigma} \le Z \le \frac{b - \mu}{\sigma}\right)$$

$$= \Phi\left(\frac{b - \mu}{\sigma}\right) - \Phi\left(\frac{a - \mu}{\sigma}\right)$$

$$P(X \le a) = \Phi\left(\frac{a - \mu}{\sigma}\right) \quad P(X \ge b) = 1 - \Phi\left(\frac{b - \mu}{\sigma}\right)$$

Section 6.3: Linear combination of random variables

$\mathsf{Theorem}$

Let $X_1, X_2, ..., X_n$ be independent random variables (with possibly different means and/or variances). Define

$$T = a_1 X_1 + a_2 X_2 + \ldots + a_n X_n$$

then the mean and the standard deviation of T can be computed by

- $E(T) = a_1 E(X_1) + a_2 E(X_2) + \ldots + a_n E(X_n)$
- $\bullet \ \sigma_T^2 = a_1^2 \sigma_{X_1}^2 + a_2^2 \sigma_{X_2}^2 + \ldots + a_n^2 \sigma_{X_n}^2$

Section 6.2: Distribution of the sample mean

Theorem

Let X_1, X_2, \ldots, X_n be a random sample from a distribution with mean μ and variance σ^2 . Then, in the limit when $n \to \infty$, the standardized version of \bar{X} have the standard normal distribution

$$\lim_{n\to\infty}\mathbb{P}\left(\frac{\bar{X}-\mu}{\sigma/\sqrt{n}}\leq z\right)=\mathbb{P}[Z\leq z]=\Phi(z)$$

Rule of Thumb:

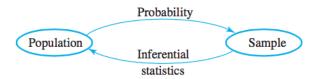
If n > 30, the Central Limit Theorem can be used for computation.

Chapter 7: Point Estimation

Chapter 7: Point estimates

- 7.1 Point estimate
 - unbiased estimator
 - mean squared error
- 7.2 Methods of point estimation
 - method of moments
 - method of maximum likelihood.

Point estimate



Definition

A point estimate $\hat{\theta}$ of a parameter θ is a single number that can be regarded as a sensible value for θ .

population parameter
$$\implies$$
 sample \implies estimate $\theta \implies X_1, X_2, \dots, X_n \implies \hat{\theta}$

Mean Squared Error & Bias-variance decomposition

Definition

The mean squared error of an estimator $\hat{\theta}$ is

$$E[(\hat{\theta} - \theta)^2]$$

Theorem

$$MSE(\hat{\theta}) = E[(\hat{\theta} - \theta)^2] = V(\hat{\theta}) + (E(\hat{\theta}) - \theta)^2$$

Bias-variance decomposition

Mean squared error = variance of estimator + $(bias)^2$

Unbiased estimators

Definition

A point estimator $\hat{\theta}$ is said to be an unbiased estimator of θ if

$$E(\hat{\theta}) = \theta$$

for every possible value of θ .

Unbiased estimator

$$\Leftrightarrow$$
 Bias = 0

 \Leftrightarrow Mean squared error = variance of estimator

Method of moments: ideas

• Let X_1, \ldots, X_n be a random sample from a distribution with pmf or pdf

$$f(x; \theta_1, \theta_2, \ldots, \theta_m)$$

• Assume that for k = 1, ..., m

$$\frac{X_1^k + X_2^k + \ldots + X_n^k}{n} = E(X^k)$$

• Solve the system of equations for $\theta_1, \theta_2, \dots, \theta_m$

Maximum likelihood estimator

• Let $X_1, X_2, ..., X_n$ have joint pmf or pdf

$$f_{joint}(x_1, x_2, \ldots, x_n; \theta)$$

where θ is unknown.

- When x_1, \ldots, x_n are the observed sample values and this expression is regarded as a function of θ , it is called the likelihood function.
- The maximum likelihood estimates θ_{ML} are the value for θ that maximize the likelihood function:

$$f_{joint}(x_1, x_2, \dots, x_n; \theta_{ML}) \ge f_{joint}(x_1, x_2, \dots, x_n; \theta) \quad \forall \theta$$

How to find the MLE?

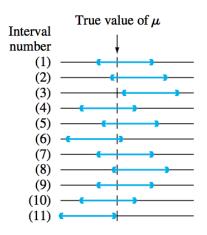
- Step 1: Write down the likelihood function.
- Step 2: Can you find the maximum of this function?
- Step 3: Try taking the logarithm of this function.
- Step 4: Find the maximum of this new function.

To find the maximum of a function of θ :

- ullet compute the derivative of the function with respect to heta
- set this expression of the derivative to 0
- solve the equation

Chapters 8 and 10: Confidence intervals

Interpreting confidence interval



95% confidence interval: If we repeat the experiment many times, the interval contains μ about 95% of the time

Confidence intervals

- By target
 - Chapter 8: Confidence intervals for population means
 - Chapter 8: Prediction intervals for an additional sample
 - Chapter 10: Confidence intervals for difference between two population means
 - independent samples
 - paired samples
- By types
 - (Standard) two-sided confidence intervals
 - One-sided confidence intervals (confidence bounds)
- By distributions of the statistics
 - z-statistic
 - t-statistic

Chapter 8: Confidence intervals

- Section 8.1
 - Normal distribution, σ is known
- Section 8.2
 - Normal distribution, σ is known
 - n > 40
- Section 8.3
 - Normal distribution, σ is known
 - n is small
 - \rightarrow t-distribution

Section 8.1

Assumptions:

- Normal distribution
- \bullet σ is known

A $100(1-\alpha)\%$ confidence interval for the mean μ of a normal population when the value of σ is known is given by

$$\left(\bar{x} - z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}, \bar{x} + z_{\alpha/2} \cdot \frac{\sigma}{\sqrt{n}}\right) \tag{8.5}$$

or, equivalently, by $\bar{x} \pm z_{\alpha/2} \cdot \sigma / \sqrt{n}$.

Section 8.2

If after observing X_1, X_2, \ldots, X_n (n > 40), we compute the observed sample mean \bar{x} and sample standard deviation s. Then

$$\left(\bar{x}-z_{\alpha/2}\frac{s}{\sqrt{n}},\bar{x}+z_{\alpha/2}\frac{s}{\sqrt{n}}\right)$$

is a 95% confidence interval of μ

Section 8.3

Let \bar{x} and s be the sample mean and sample standard deviation computed from the results of a random sample from a normal population with mean μ . Then a $100(1 - \alpha)\%$ confidence interval for μ , the one-sample t CI, is

$$\left(\overline{x} - t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}}, \overline{x} + t_{\alpha/2, n-1} \cdot \frac{s}{\sqrt{n}}\right) \tag{8.15}$$

or, more compactly, $\bar{x} \pm t_{\alpha/2,n-1} \cdot s/\sqrt{n}$.

An upper confidence bound for μ is

$$\bar{x} + t_{\alpha,n-1} \cdot \frac{s}{\sqrt{n}}$$

and replacing + by – in this latter expression gives a **lower confidence** bound for μ ; both have confidence level $100(1 - \alpha)\%$.

Prediction intervals

- We have available a random sample $X_1, X_2, ..., X_n$ from a normal population distribution
- We wish to predict the value of X_{n+1} , a single future observation.

A prediction interval (PI) for a single observation to be selected from a normal population distribution is

$$\bar{x} \pm t_{\alpha/2, n-1} \cdot s \sqrt{1 + \frac{1}{n}} \tag{8.16}$$

The prediction level is $100(1 - \alpha)\%$.

Confidence intervals: difference between two means

- Independent samples
 - ① X_1, X_2, \ldots, X_m is a random sample from a population with mean μ_1 and variance σ_1^2 .
 - ② $Y_1, Y_2, ..., Y_n$ is a random sample from a population with mean μ_2 and variance σ_2^2 .
 - 3 The X and Y samples are independent of each other.
- Paired samples
 - There is only one set of n individuals or experimental objects
 - 2 Two observations are made on each individual or object

Difference between population means: independent samples

The two-sample t confidence interval for $\mu_1 - \mu_2$ with confidence level $100(1 - \alpha)\%$ is then

$$\overline{x} - \overline{y} \pm t_{\alpha/2,\nu} \sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}$$

A one-sided confidence bound can be calculated as described earlier.

Difference between population means: paired samples

• The paired t CI for μ_D is

$$ar{d} \pm t_{lpha/2,n-1} rac{s_D}{\sqrt{n}}$$

• A one-sided confidence bound results from retaining the relevant sign and replacing $t_{\alpha/2,n-1}$ by $t_{\alpha,n-1}$.

Principles for deriving CIs

If X_1, X_2, \ldots, X_n is a random sample from a distribution $f(x, \theta)$, then

- Find a random variable $Y = h(X_1, X_2, ..., X_n; \theta)$ such that he probability distribution of Y does not depend on θ or on any other unknown parameters.
- Find constants a, b such that

$$P[a < h(X_1, X_2, \dots, X_n; \theta) < b] = 1 - \alpha$$

• Manipulate these inequality to isolate θ

$$P[\ell(X_1, X_2, ..., X_n) < \theta < u(X_1, X_2, ..., X_n)] = 1 - \alpha$$

Examples

• For μ and X_{n+1}

$$\frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}, \quad \frac{\bar{X} - X_{n+1}}{S\sqrt{1 + 1/n}} \sim t_{n-1}$$

• Difference between two means [independent samples]

$$rac{(ar{X}-ar{Y})-(\mu_1-\mu_2)}{\sqrt{rac{S_1^2}{m}+rac{S_2^2}{n}}}\sim t_
u$$

• Difference between two means [paired samples]

$$T = rac{ar{D} - \mu_D}{S_D / \sqrt{n}} \sim t_{n-1}$$

Chapters 9 and 10: Tests of hypotheses

Test of hypotheses

- By target
 - Chapter 9: population mean
 - Chapter 10: difference between two population means
 - independent samples
 - paired samples
- By the alternative hypothesis
 - >
 - <
 - ≠
- By the type of test
 - z-test
 - t-test
- By method of testing
 - Rejection region
 - p-value

Hypothesis testing

In any hypothesis-testing problem, there are two contradictory hypotheses under consideration

- The null hypothesis, denoted by H_0 , is the claim that is initially assumed to be true
- The alternative hypothesis, denoted by H_a , is the assertion that is contradictory to H_0 .

Implicit rules

- H_0 will always be stated as an equality claim.
- \bullet If θ denotes the parameter of interest, the null hypothesis will have the form

$$H_0: \theta = \theta_0$$

- \bullet θ_0 is a specified number called the *null value*
- The alternative hypothesis will be either:
 - $H_a: \theta > \theta_0$
 - H_a : $\theta < \theta_0$
 - H_a : $\theta \neq \theta_0$

Test procedures

A test procedure is specified by the following:

- A test statistic T: a function of the sample data on which the decision (reject H_0 or do not reject H_0) is to be based
- A rejection region \mathcal{R} : the set of all test statistic values for which H_0 will be rejected
- A type I error consists of rejecting the null hypothesis H₀
 when it is true
- A type II error involves not rejecting H_0 when H_0 is false.

Hypothesis testing for one parameter: rejection region method

- Identify the parameter of interest
- 2 Determine the null value and state the null hypothesis
- State the appropriate alternative hypothesis
- Give the formula for the test statistic
- **5** State the rejection region for the selected significance level α
- Ompute statistic value from data
- Decide whether H_0 should be rejected and state this conclusion in the problem context

Normal population with known σ

Null hypothesis: $\mu = \mu_0$ Test statistic:

$$Z = \frac{\bar{X} - \mu_0}{\sigma / \sqrt{n}}$$

. .

Alternative Hypothesis

$$H_{a}$$
: $\mu > \mu_{0}$
 H_{a} : $\mu < \mu_{0}$

$$H_a$$
: $\mu \neq \mu_0$

Rejection Region for Level α Test

$$z \ge z_{\alpha}$$
 (upper-tailed test)
 $z \le -z_{\alpha}$ (lower-tailed test)
either $z \ge z_{\alpha/2}$ or $z \le -z_{\alpha/2}$ (two-tailed test)

Large-sample tests

Null hypothesis: $\mu = \mu_0$ Test statistic:

$$Z = \frac{\bar{X} - \mu_0}{S/\sqrt{n}}$$

Alternative Hypothesis

Rejection Region for Level α Test

$$H_{a}$$
: $\mu > \mu_{0}$
 H_{a} : $\mu < \mu_{0}$
 H_{a} : $\mu \neq \mu_{0}$

$$z \ge z_{\alpha}$$
 (upper-tailed test)
 $z \le -z_{\alpha}$ (lower-tailed test)
either $z \ge z_{\alpha/2}$ or $z \le -z_{\alpha/2}$ (two-tailed test)

[Does not need the normal assumption]

t-test

Null hypothesis:
$$H_0$$
: $\mu = \mu_0$
Test statistic value: $t = \frac{\overline{x} - \mu_0}{s/\sqrt{n}}$

Alternative Hypothesis

Rejection Region for a Level α Test

$$H_a$$
: $\mu > \mu_0$ $t \ge t_{\alpha,n-1}$ (upper-tailed)
 H_a : $\mu < \mu_0$ $t \le -t_{\alpha,n-1}$ (lower-tailed)
 H_a : $\mu \ne \mu_0$ either $t \ge t_{\alpha/2,n-1}$ or $t \le -t_{\alpha/2,n-1}$ (two-tailed)

[Require normal assumption]

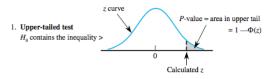
P-value

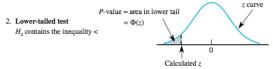
DEFINITION

The **P-value** (or observed significance level) is the smallest level of significance at which H_0 would be rejected when a specified test procedure is used on a given data set. Once the P-value has been determined, the conclusion at any particular level α results from comparing the P-value to α :

- 1. P-value $\leq \alpha \Rightarrow$ reject H_0 at level α .
- **2.** P-value $> \alpha \Rightarrow$ do not reject H_0 at level α .

P-values for z-tests





Two-tailed test
 H_a contains the inequality ≠

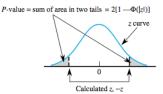


Figure 9.7 Determination of the P-value for a z test

P-values for t-tests

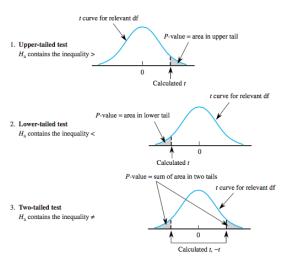


Figure 9.8 P-values for t tests

Testing by rejection region method

- \bullet Parameter of interest: $\mu = {\rm true}$ average activation temperature
- Hypotheses

$$H_0: \mu = 130$$

 $H_a: \mu \neq 130$

Test statistic:

$$z = \frac{\bar{x} - 130}{1.5/\sqrt{n}}$$

- Rejection region: either $z \le -z_{0.005}$ or $z \ge z_{0.005} = 2.58$
- Substituting $\bar{x} = 131.08$, $n = 25 \rightarrow z = 2.16$.
- Note that -2.58 < 2.16 < 2.58. We fail to reject H_0 at significance level 0.01.
- The data does not give strong support to the claim that the true average differs from the design value.

Testing by p-value

- 1. Parameter of interest: μ = true average wafer thickness
- **2.** Null hypothesis: H_0 : $\mu = 245$
- 3. Alternative hypothesis: H_a : $\mu \neq 245$
- **4.** Formula for test statistic value: $z = \frac{\bar{x} 245}{s/\sqrt{n}}$
- 5. Calculation of test statistic value: $z = \frac{246.18 245}{3.60/\sqrt{50}} = 2.32$
- **6.** Determination of *P*-value: Because the test is two-tailed,

$$P$$
-value = $2[1 - \Phi(2.32)] = .0204$

7. Conclusion: Using a significance level of .01, H₀ would not be rejected since .0204 > .01. At this significance level, there is insufficient evidence to conclude that true average thickness differs from the target value.

Interpreting P-values

A P-value:

- is not the probability that H_0 is true
- is not the probability of rejecting H_0
- is the probability, calculated assuming that H_0 is true, of obtaining a test statistic value at least as contradictory to the null hypothesis as the value that actually resulted

Testing the difference between two population means

- Setting: independent normal random samples X_1, X_2, \ldots, X_m and Y_1, Y_2, \ldots, Y_n with known values of σ_1 and σ_2 . Constant Δ_0 .
- Null hypothesis:

$$H_0: \mu_1 - \mu_2 = \Delta_0$$

- Alternative hypothesis:
 - (a) $H_a: \mu_1 \mu_2 > \Delta_0$
 - (b) $H_a: \mu_1 \mu_2 < \Delta_0$
 - (c) $H_a: \mu_1 \mu_2 \neq \Delta_0$
- When $\Delta = 0$, the test (c) becomes

$$H_0: \mu_1 = \mu_2$$

$$H_a: \mu_1 \neq \mu_2$$

Difference between 2 means (independent samples)

Proposition

The **two-sample** t test for testing H_0 : $\mu_1 - \mu_2 = \Delta_0$ is as follows:

Test statistic value:
$$t = \frac{\bar{x} - \bar{y} - \Delta_0}{\sqrt{\frac{s_1^2}{m} + \frac{s_2^2}{n}}}$$

Alternative Hypothesis Rejection Region for Approximate Level α Test

$$H_a$$
: $\mu_1 - \mu_2 > \Delta_0$ $t \ge t_{\alpha,\nu}$ (upper-tailed test)
 H_a : $\mu_1 - \mu_2 < \Delta_0$ $t \le -t_{\alpha,\nu}$ (lower-tailed test)
 H_a : $\mu_1 - \mu_2 \ne \Delta_0$ either $t \ge t_{\alpha/2,\nu}$ or $t \le -t_{\alpha/2,\nu}$ (two-tailed test)

A P-value can be computed as described in Section 9.4 for the one-sample t test.

The paired t-test

Idea: to test hypotheses about $\mu_1 - \mu_2$ when data is paired:

- form the differences D_1, D_2, \ldots, D_n
- ② carry out a one-sample t-test (based on n-1 df) on the differences.

The paired t-test

THE PAIRED t TEST

Null hypothesis:
$$H_0$$
: $\mu_D = \Delta_0$

Test statistic value:
$$t = \frac{\overline{d} - \Delta_0}{s_D / \sqrt{n}}$$

(where D = X - Y is the difference between the first and second observations within a pair, and $\mu_D = \mu_1 - \mu_2$) (where \overline{d} and s_D are the sample mean and standard deviation, respectively, of the d_i 's)

Alternative Hypothesis

$$H_{a}$$
: $\mu_{D} > \Delta_{0}$
 H_{a} : $\mu_{D} < \Delta_{0}$
 H_{a} : $\mu_{D} \neq \Delta_{0}$

Rejection Region for Level a Test

$$\begin{aligned} &t \geq t_{\alpha,n-1} \\ &t \leq -t_{\alpha,n-1} \\ &\text{either } t \geq t_{\alpha/2,n-1} \text{ or } t \leq -t_{\alpha/2,n-1} \end{aligned}$$

A P-value can be calculated as was done for earlier t tests.

Practice problems

A company that makes cola drinks states that the mean caffeine content per one 12-ounce bottle of cola is 40 milligrams. You work as a quality control manager and are asked to test this claim. During your tests, you find that a random sample of 30 bottles of cola (12-ounce) has a mean caffeine content of 39.2 milligrams. From a previous study, you know that the standard deviation of the population is $\sigma=7.5$ milligrams. We assume that the caffeine content is normally distributed.

(a) (20 points) At α = 1% level of significant, can you reject the company's claim? What is the P-value associated with the test?

(20 points) In an experiment designed to study the effects of illumination level on task performance, subjects were required to insert a netipped probe into the eyeholes of ten needles in rapid succession both for a low light level with a black background and a higher level with a white background. Each data value is the time (sec) required to complete the task.

Subject	1	2	3	4	5
Black	25.85	28.84	32.05	25.74	20.89
White	18.23	20.84	22.96	19.68	19.50
Subject	6	7		8	9
Black	41.05	25.01		24.96	27.47
White	24.98	16	.61	16.07	24.59

Does the data indicate that the higher level of illumination yields a decrease of more than 5 sec in true average task completion time with significance level $\alpha=0.01$?

Let $0 < \theta < \infty$ and X_1, X_2, \dots, X_n sample from a distribution with density function

$$f(x;\theta) = \frac{1}{\theta}, \quad 0 \le x \le \theta.$$

(a) (20 points) Construct an estimator of θ by the method of moments.

3. (20 points) Extensive monitoring of a computer time-sharing system has suggested that response time to a particular editing command is normally distributed with standard deviation 30 ms.

A new operating system has been installed, and we wish to estimate the true average response time μ for the new environment. Assuming that response times are still normally distributed with $\sigma = 30$, what sample size is necessary to ensure that the resulting 90% CI has a width of (at most) 10?

As the population ages, there is increasing concern about accident-related injuries to the elderly. An article reported on an experiment in which the maximum lean angle (the furthest a subject is able to lean and still recover in one step) was determined for both a sample of younger females (21–29 years) and a sample of older females (67–81 years). The following observations are consistent with summary data given in the article:

- Younger females: 29, 34, 33, 27, 28, 32, 31, 34, 32, 27
- Older females: 18, 15, 23, 13, 12.

The data are assumed to be normally distributed.

(a) (20 points) Calculate a 90% confidence interval for the difference between the true average maximum lean angles of younger females and of older females.